login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177398
O.g.f.: exp( Sum_{n>=1} (sigma(2n)-sigma(n))^2 * x^n/n ).
4
1, 4, 16, 64, 208, 656, 1984, 5632, 15520, 41476, 107312, 271232, 670464, 1622160, 3854208, 9003264, 20696640, 46895248, 104827472, 231353984, 504592448, 1088323584, 2322683072, 4908033280, 10273819136, 21313971876, 43843093488
OFFSET
0,2
COMMENTS
Here sigma(n) = A000203(n) is the sum of divisors of n. Compare g.f. to the formula for Jacobi theta_4(x) given by:
. theta_4(x) = exp( Sum_{n>=1} (sigma(n)-sigma(2n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..400 from Paul D. Hanna)
EXAMPLE
G.f.: A(x) = 1 + 4*x + 16*x^2 + 64*x^3 + 208*x^4 + 656*x^5 +...
log(A(x)) = 4*x + 16*x^2/2 + 64*x^3/3 +...+ A054785(n)^2*x^n/n +...
MATHEMATICA
nmax = 30; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*k] - DivisorSigma[1, k])^2 * x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 26 2019 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m)-sigma(m))^2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 30 2010
STATUS
approved