The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177399 O.g.f.: exp( Sum_{n>=1} (sigma(2n)-sigma(n))^n * x^n/n ). 3
1, 2, 10, 188, 1414, 53596, 2923652, 44668152, 651967302, 605335444140, 7564881098284, 157357140966472, 96537385644719004, 695895399853879448, 86358988630956719304, 1103071610291574716763120 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Here sigma(n) = A000203(n) is the sum of divisors of n.
Compare g.f. to the formula for Jacobi theta_4(x) given by:
. theta_4(x) = exp( Sum_{n>=1} -(sigma(2n)-sigma(n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 1414*x^4 + 53596*x^5 +...
log(A(x)) = 2*x + 4^2*x^2/2 + 8^3*x^3/3 + 8^4*x^4/4 + 12^5*x^5/5 +...+ A054785(n)^n*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m)-sigma(m))^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A057119 A226563 A037267 * A194971 A155200 A264563
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 30 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 07:46 EDT 2024. Contains 373366 sequences. (Running on oeis4.)