login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227312
L.g.f.: log(1 + 2*Sum_{n>=1} 2^n * x^(n^2)).
2
4, -16, 64, -224, 864, -3328, 12800, -49408, 190864, -736896, 2845440, -10987520, 42426752, -163825664, 632592384, -2442673664, 9432071040, -36420732160, 140633977856, -543040041984, 2096879372288, -8096830353408, 31264870391808, -120725281128448, 466165166208064, -1800036911561216, 6950611323771904
OFFSET
1,1
COMMENTS
Compare to the logarithm of theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2):
log(theta_3(x)) = Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n, where sigma is the sum of divisors of n (A000203).
EXAMPLE
L.g.f.: L(x) = 4*x - 16*x^2/2 + 64*x^3/3 - 224*x^4/4 + 864*x^5/5 - 3328*x^6/6 + 12800*x^7/7 - 49408*x^8/8 + 190864*x^9/9 - 736896*x^10/10 + 2845440*x^11/11 - 10987520*x^12/12 + 42426752*x^13/13 - 163825664*x^14/14 + 632592384*x^15/15 - 2442673664*x^16/16 +...
where
exp(L(x)) = 1 + 4*x + 8*x^4 + 16*x^9 + 32*x^16 + 64*x^25 + 128*x^36 + 256*x^49 +...
PROG
(PARI) {a(n)=n*polcoeff(log(1+sum(k=1, n, 2*2^k*x^(k^2))+x*O(x^n)), n)}
for(n=1, 36, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 06 2013
STATUS
approved