login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177395 G.f. satisfies: x = A(x) - A(A(x))^2 - A(A(A(x)))^3. 3
1, 1, 5, 37, 338, 3530, 40546, 500781, 6556080, 90097535, 1290778689, 19180015667, 294460699563, 4656776745569, 75682133890995, 1261603117268148, 21537605020132685, 376060923637721700, 6708681746445946648 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
G.f. satisfies: x = A( x - A(x)^2 - A(A(x))^3 ).
...
G.f. satisfies: A_{n}(x) = A_{n+1}(x) - A_{n+2}(x)^2 - A_{n+3}(x)^3 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
. A = 1 + xB^2 + x^2*C^3;
. B = A + xC^2 + x^2*D^3;
. C = B + xD^2 + x^2*E^3;
. D = C + xE^2 + x^2*F^3; ...
. also B = A(A(x))/x, C = A(A(A(x)))/x, D = A(A(A(A(x))))/x, etc.
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 37*x^4 + 338*x^5 + 3530*x^6 +...
Coefficients in the iterations A_{n}(x), n=1..9, of A(x) begin:
A_1: [1, 1, 5, 37, 338, 3530, 40546, 500781, ...];
A_2: [1, 2, 12, 100, 998, 11197, 136682, 1780674, ...];
A_3: [1, 3, 21, 195, 2120, 25571, 332664, 4589974, ...];
A_4: [1, 4, 32, 328, 3868, 50078, 694340, 10157760, ...];
A_5: [1, 5, 45, 505, 6430, 89120, 1315126, 20388639, ...];
A_6: [1, 6, 60, 732, 10018, 148195, 2322702, 38106722, ...];
A_7: [1, 7, 77, 1015, 14868, 234017, 3886428, 67351872, ...];
A_8: [1, 8, 96, 1360, 21240, 354636, 6225480, 113733264, ...];
A_9: [1, 9, 117, 1773, 29418, 519558, 9617706, 184845297,...].
Coefficients in functions: x = A(x) - A_2(x)^2 - A_3(x)^3 begin:
(A_1)^1: [1, 1, 5, 37, 338, 3530, 40546, 500781, 6556080, ...];
(A_2)^2: [0, 1, 4, 28, 248, 2540, 28786, 352104, 4576404 ...];
(A_3)^3: [0, 0, 1,. 9,. 90,. 990, 11760, 148677, 1979676, ...].
Coefficients in functions: A(x) = A_2(x) - A_3(x)^2 - A_4(x)^3 begin:
(A_2)^1: [1, 2, 12, 100, 998, 11197, 136682, 1780674, 24453430, ...];
(A_3)^2: [0, 1,. 6,. 51, 516,. 5851,. 72052,. 945819, 13076714, ...];
(A_4)^3: [0, 0,. 1,. 12, 144,. 1816,. 24084,. 334074,. 4820636, ...].
Coefficients in functions: A_2(x) = A_3(x) - A_4(x)^2 -A_5(x)^3 begin:
(A_3)^1: [1, 3, 21, 195, 2120, 25571, 332664, 4589974, 66441348, ...];
(A_4)^2: [0, 1,. 8,. 80,. 912, 11384, 152092, 2144440, 31612640, ...];
(A_5)^3: [0, 0,. 1,. 15,. 210,. 2990,. 43890,. 664860, 10375278, ...].
PROG
(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x-(A+x*O(x^n))^2-subst(A, x, A+x*O(x^n))^3)); polcoeff(A, n))}
CROSSREFS
Sequence in context: A199562 A246540 A365842 * A370343 A258296 A197713
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 29 2010
EXTENSIONS
Typos in examples corrected by Paul D. Hanna, May 29 2010
Formula corrected by Paul D. Hanna, May 29 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 14:04 EDT 2024. Contains 374592 sequences. (Running on oeis4.)