login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246540
G.f.: Sum_{n>=0} 4^n * x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2.
2
1, 5, 37, 325, 3125, 31925, 339077, 3700645, 41200981, 465736725, 5328229797, 61552244485, 716791570549, 8403794763125, 99096946864325, 1174370518273125, 13977636401394069, 167001257979441365, 2002052157653251557, 24073717683854557125, 290261630170911545525, 3508332484300450371125
OFFSET
0,2
COMMENTS
a(n) == 5 (mod 16) for n>=1.
FORMULA
G.f.: Sum_{n>=0} x^n / (1-4*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k]^2.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^k * Sum_{j=0..k} C(k,j)^2 * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * Sum_{j=0..k} C(k,j)^2 * 4^j * x^j.
a(n) = Sum_{k=0..[n/2]} 4^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 4^j.
Recurrence: (n-3)*n^2*a(n) = 5*(n-3)*(3*n^2 - 3*n + 1)*a(n-1) - (n-1)*(23*n^2 - 92*n + 65)*a(n-2) - 5*(n-2)*(15*n^2 - 60*n + 53)*a(n-3) - 4*(n-3)*(23*n^2 - 92*n + 65)*a(n-4) + 80*(n-1)*(3*n^2 - 21*n + 37)*a(n-5) - 64*(n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Nov 05 2014
a(n) ~ ((13+3*sqrt(17))/2)^(n+1) / (8*Pi*n). - Vaclav Kotesovec, Nov 05 2014
EXAMPLE
G.f.: A(x) = 1 + 5*x + 37*x^2 + 325*x^3 + 3125*x^4 + 31925*x^5 +...
where
A(x) = 1/(1-x) + 4*x/(1-x)^3*(1+x)^2
+ 4^2*x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
+ 4^3*x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3)^2
+ 4^4*x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ 4^5*x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ 4^6*x^6/(1-x)^13*(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
MATHEMATICA
Table[Sum[4^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 4^j, {j, 0, n-2*k}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, 4^m*x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-4*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 4^k * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * sum(j=0, k, binomial(k, j)^2 * 4^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a formula for a(n): */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 4^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 4^j))}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 28 2014
STATUS
approved