login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317278
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*k^n*n!/k!.
3
1, 1, 2, -15, -164, 4245, 46386, -4901939, 39141656, 11707820361, -671114863610, -29398709945319, 7385525824325364, -307076643365636963, -73748845974115224262, 14299745046516639280005, -237996466462017367478864, -377740669670216316717155055, 75515477307532501838072029326
OFFSET
0,3
COMMENTS
a(n) is the n-th term of the inverse Lah transform of the n-th powers.
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = n! * [x^n] Sum_{k>=0} k^n*(x/(1 + x))^k/k!.
MAPLE
A317278:= n-> `if`(n=0, 1, add((-1)^(n+j)*binomial(n-1, j-1)*binomial(n, j)*(n-j)!*j^n, j=0..n));
seq(A317278(n), n=0..30); # G. C. Greubel, Mar 09 2021
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n-k) Binomial[n-1, k-1] k^n n!/k!, {k, n}], {n, 18}]]
Join[{1}, Table[n! SeriesCoefficient[Sum[k^n (x/(1 + x))^k/k!, {k, n}], {x, 0, n}], {n, 18}]]
PROG
(Sage) [1]+[sum((-1)^(n+j)*binomial(n-1, j-1)*binomial(n, j)*factorial(n-j)*j^n for j in (0..n)) for n in (1..30)] # G. C. Greubel, Mar 09 2021
(Magma) [1]cat[(&+[(-1)^(n+j)*Binomial(n-1, j-1)*Binomial(n, j)*Factorial(n-j)*j^n: j in [0..n]]): n in [1..30]]; // G. C. Greubel, Mar 09 2021
(PARI) a(n) = if (n==0, 1, sum(k=0, n, (-1)^(n-k)*binomial(n-1, k-1)*k^n*n!/k!)); \\ Michel Marcus, Mar 10 2021; corrected Jun 13 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 25 2018
STATUS
approved