login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256467
Inverse Lah transform of the squares.
1
0, 1, 2, -9, 28, -55, -234, 5047, -59464, 620433, -6210710, 60312791, -552386988, 4291343641, -14786103682, -469083221865, 17904311480176, -458594711604703, 10473023418660306, -228670491372982217, 4899169866194557580, -104056906653521654679, 2196053393686810460902
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n}(-1)^(n-k)*(n-k)!*C(n,n-k)*C(n-1,n-k)*k^2.
a(n) = (-1)^(n+1)*n!*hypergeom([2, 1-n], [1, 1], 1) for n>=1.
D-finite with recurrence +(-n+1)*a(n) +(-2*n^2+3*n+4)*a(n-1) -(n-1)*(n-2)*(n+1)*a(n-2)=0. - R. J. Mathar, Jul 27 2022
MAPLE
a := n -> `if`(n=0, 0, -(-1)^n*n!*hypergeom([2, 1-n], [1, 1], 1)):
seq(simplify(a(n)), n=0..22);
CROSSREFS
Cf. A103194.
Sequence in context: A100293 A202679 A340049 * A303373 A001093 A248658
KEYWORD
sign
AUTHOR
Peter Luschny, Mar 30 2015
STATUS
approved