login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248658
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^(2*k).
2
1, 1, 1, 2, 9, 28, 66, 153, 433, 1345, 3952, 10991, 30954, 90988, 271845, 804153, 2361457, 6979690, 20842285, 62493914, 187274712, 561448399, 1688263179, 5093148285, 15393417178, 46570446829, 141063389488, 427979185898, 1300470246165, 3956367018001, 12048354848013, 36728336040306
OFFSET
0,4
COMMENTS
Limit a(n)/a(n+1) = 1 - t = t^3 = 0.3176721961... where t = ((sqrt(93)+9)/18)^(1/3) - ((sqrt(93)-9)/18)^(1/3).
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} (3*n)!/(n!)^3 * x^(4*n) / (1-x-x^3)^(3*n+1).
a(n) = Sum_{k=0..[n/3]} C(n-2*k,k)^3.
G.f.: A(x) = G( x^4/(1-x-x^3)^3 )/(1-x-x^3) where G(x) satisfies:
* G(x^3) = G( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x) and G(x) is the g.f. of A006480.
EXAMPLE
G.f. A(x) = 1 + x + x^2 + 2*x^3 + 9*x^4 + 28*x^5 + 66*x^6 + 153*x^7 +...
which equals the series:
A(x) = 1/(1-x-x^3) + 3!/1!^3*x^4/(1-x-x^3)^4 + 6!/2!^3*x^8/(1-x-x^3)^7 + 9!/3!^3*x^12/(1-x-x^3)^10 + 12!/4!^3*x^16/(1-x-x^3)^13 +...
The g.f. also equals the series:
A(x) = 1 +
x*(1 + x^2) +
x^2*(1 + 2^3*x^2 + x^4) +
x^3*(1 + 3^3*x^2 + 3^3*x^4 + x^6) +
x^4*(1 + 4^3*x^2 + 6^3*x^4 + 4^3*x^6 + x^8) +
x^5*(1 + 5^3*x^2 + 10^3*x^4 + 10^3*x^6 + 5^3*x^8 + x^10) +...
MATHEMATICA
Table[Sum[Binomial[n-2*k, k]^3, {k, 0, Floor[n/3]}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2014 *)
PROG
(PARI) {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^3*x^(2*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(4*m)/(1-x-x^3 +x*O(x^n))^(3*m+1)*(3*m)!/(m!)^3), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n\3, binomial(n-2*k, k)^3)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A256467 A303373 A001093 * A121643 A353017 A183376
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 10 2014
STATUS
approved