login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353017
a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(3*k).
2
1, 1, 1, 1, 2, 9, 28, 66, 190, 946, 4441, 16650, 67069, 380795, 2220697, 11142307, 58133022, 380165427, 2581541092, 15919859932, 101602799146, 758173118356, 5826902270129, 42158185020684, 316416126945385, 2656178496077301, 22725296418141937, 187568834724460765
OFFSET
0,5
FORMULA
G.f.: Sum_{k>=0} x^k / (1 - (k * x)^3).
MATHEMATICA
a[0] = 1; a[n_] := Sum[(n-3*k)^(3*k), {k, 0, Floor[n/3]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 16 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (n-3*k)^(3*k));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^3)))
CROSSREFS
Sequence in context: A001093 A248658 A121643 * A183376 A131066 A341507
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 16 2022
STATUS
approved