OFFSET
0,4
FORMULA
G.f.: Sum_{k>=0} x^k / (1 - (k * x)^2).
a(n) = (A062811(n) + 1)/2 for n > 0. - Hugo Pfoertner, Apr 16 2022
MATHEMATICA
a[0] = 1; a[n_] := Sum[(n-2*k)^(2*k), {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 16 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (n-2*k)^(2*k));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^2)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 16 2022
STATUS
approved