login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352082
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n.
3
1, 1, 4, 28, 272, 3369, 50816, 903856, 18522624, 429746905, 11135257600, 318719062236, 9987013488640, 340037795872369, 12500401969233920, 493467700789897408, 20819865970795610112, 934939160745193002321, 44523294861684890664960
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} (k * x)^k / (1 - (k * x)^2).
Conjecture: a(n) = (1 - 2^n)*zeta(-n) - (2^n)*zeta(-n, n/2 + 1) for n > 0, where the bivariate zeta function is the Hurwitz zeta function. - Velin Yanev, Mar 25 2024
a(n) ~ n^n / (1 - exp(-2)). - Vaclav Kotesovec, Mar 25 2024
MATHEMATICA
a[0] = 1; a[n_] := Sum[(n-2*k)^n, {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (n-2*k)^n);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 16 2022
STATUS
approved