OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} (k * x)^k / (1 - (k * x)^2).
Conjecture: a(n) = (1 - 2^n)*zeta(-n) - (2^n)*zeta(-n, n/2 + 1) for n > 0, where the bivariate zeta function is the Hurwitz zeta function. - Velin Yanev, Mar 25 2024
a(n) ~ n^n / (1 - exp(-2)). - Vaclav Kotesovec, Mar 25 2024
MATHEMATICA
a[0] = 1; a[n_] := Sum[(n-2*k)^n, {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (n-2*k)^n);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 16 2022
STATUS
approved