login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129683
Expansion of (1/(1-2x))*exp(2x/(1-2x)).
1
1, 4, 28, 272, 3344, 49472, 852928, 16758016, 369082624, 8996922368, 240294124544, 6974172532736, 218457925292032, 7342688736329728, 263513011737051136, 10054112734940561408, 406301504472849907712, 17333090863574658842624, 778298003006760943353856
OFFSET
0,2
COMMENTS
a(n) = 2^n*A002720(n).
FORMULA
E.g.f.: (1/(1-2x))*exp(2x/(1-2x)). - corrected by Vaclav Kotesovec, Sep 26 2013
a(n) = 2^n*n!*sum{k=0..n, C(n,k)/k!}.
Conjecture: a(n) -4*n*a(n-1) +4*(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(n-1/2)*n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Sep 26 2013
a(n) = 2^n*n!*LaguerreL(n, -1). - Peter Luschny, Jan 19 2020
MAPLE
a := n -> 2^n*n!*LaguerreL(n, -1):
seq(simplify(a(n)), n=0..18); # Peter Luschny, Jan 19 2020
MATHEMATICA
Table[2^n*n!*Sum[Binomial[n, k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 26 2013 *)
CoefficientList[Series[(1/(1-2*x))*E^(2*x/(1-2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 26 2013 *)
CROSSREFS
Sequence in context: A191686 A231694 A112915 * A367474 A360730 A352082
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 28 2007
EXTENSIONS
Error in definition corrected by Vaclav Kotesovec, Sep 26 2013
STATUS
approved