|
|
A112915
|
|
Recurrence: a(n) = Sum_{k=0..n-1} (k+1)*(n-k)*a(k)*a(n-k-1) for n>0, with a(0)=1.
|
|
7
|
|
|
1, 1, 4, 28, 272, 3312, 47872, 794880, 14840064, 306900736, 6953989120, 171200048128, 4548965384192, 129742326218752, 3953689388187648, 128215703582343168, 4409347536459988992, 160304460015345795072
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
A(x) = 1 + x*G(2*x)^2, where G(x) = g.f. of A088716, such that a(n) = 2^n*A088716(n)/(n+1) for n>=0.
a(n) = 2^(n-1)*A112916(n-1) for n>0.
G.f. satisfies: A(x) = 1 + x*(d/dx[x*A(x)])^2 = 1 + x*(A(x) + x*A'(x))^2.
|
|
PROG
|
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, (k+1)*(n-k)*a(k)*a(n-k-1)))
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x*deriv(x*F)^2); return(polcoeff(F, n, x))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|