login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352081
Numbers of the form k*p^k, where k>1 and p is a prime.
1
8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
OFFSET
1,1
COMMENTS
Each term in this sequence has a single presentation in the form k*p^k.
LINKS
Peter Lindqvist and Jaak Peetre, On the remainder in a series of Mertens, Expositiones Mathematicae, Vol. 15 (1997), pp. 467-478. See eq. (3).
Eric Weisstein's World of Mathematics, Mertens Constant. See eq. (5).
FORMULA
Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).
EXAMPLE
8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
MATHEMATICA
addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]
CROSSREFS
Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.
Sequence in context: A201023 A199989 A201056 * A257404 A190508 A298161
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 16 2022
STATUS
approved