login
A298161
Nonnegative numbers n such that for any k > 0, n + k is not a multiple of prime(k) (where prime(k) denotes the k-th prime).
2
0, 8, 18, 26, 36, 54, 56, 74, 84, 86, 134, 140, 156, 168, 170, 174, 194, 200, 216, 224, 236, 240, 246, 260, 300, 308, 324, 326, 366, 368, 386, 390, 414, 420, 440, 456, 464, 476, 494, 498, 518, 536, 560, 564, 576, 590, 594, 624, 630, 650, 660, 678, 698, 708
OFFSET
1,2
COMMENTS
Equivalently, these are the numbers n >= 0 such that A298155(n) = 1.
Equivalently, these are the numbers n >= 0 such that the diagonal of A060175 starting at A060175(n+1, 1) contains only zeros.
All terms are even.
This sequence is a subsequence of A005843, A007494, A047207 and A047318.
LINKS
FORMULA
A007814(a(n) + 1) = 0.
A007949(a(n) + 2) = 0.
A112765(a(n) + 3) = 0.
A214411(a(n) + 4) = 0.
MAPLE
filter:= proc(n) local p, k;
p:= 1:
for k from 1 do
p:= nextprime(p);
if p > n+k then return true
elif n+k mod p = 0 then return false
fi
od
end proc:
select(filter, [seq(i, i=0..1000, 2)]); # Robert Israel, Jan 16 2018
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jan 14 2018
STATUS
approved