The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112765 Exponent of highest power of 5 dividing n. Or, 5-adic valuation of n. 50
 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,25 COMMENTS A027868 gives partial sums. This is also the 5-adic valuation of Fibonacci(n). See Lengyel link. - Michel Marcus, May 06 2017 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Dario T. de Castro, P-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022. T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), no. 3, 234-239. See Lemma 1 p. 235. FORMULA Totally additive with a(p) = 1 if p = 5, 0 otherwise. From Hieronymus Fischer, Jun 08 2012: (Start) With m = floor(log_5(n)), frac(x) = x-floor(x): a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/5^j))). a(n) = m + Sum_{j=1..m} (floor(-frac(n/5^j))). a(n) = A027868(n) - A027868(n-1). G.f.: Sum_{j>0} x^5^j/(1-x^5^j). (End) a(5n) = A055457(n). - R. J. Mathar, Jul 17 2012 Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/4. - Amiram Eldar, Feb 14 2021 a(n) = 5*Sum_{j=1..floor(log(n)/log(5))} frac(binomial(n, 5^j)*5^(j-1)/n). - Dario T. de Castro, Jul 10 2022 MAPLE A112765 := proc(n) padic[ordp](n, 5) ; end proc: # R. J. Mathar, Jul 12 2016 MATHEMATICA a[n_] := IntegerExponent[n, 5]; Array[a, 105] (* Jean-François Alcover, Jan 25 2018 *) PROG (Haskell) a112765 n = fives n 0 where fives n e | r > 0 = e | otherwise = fives n' (e + 1) where (n', r) = divMod n 5 -- Reinhard Zumkeller, Apr 08 2011 (PARI) A112765(n)=valuation(n, 5); /* Joerg Arndt, Apr 08 2011 */ (Python) def a(n): k = 0 while n > 0 and n%5 == 0: n //= 5; k += 1 return k print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Aug 06 2021 CROSSREFS Cf. A007814, A007949, A112762, A022337, A122840, A027868, A054899, A122841, A160093, A160094, A196563, A196564. Cf. A343251. Sequence in context: A073345 A216511 A138088 * A105966 A318950 A319000 Adjacent sequences: A112762 A112763 A112764 * A112766 A112767 A112768 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Sep 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 07:16 EDT 2024. Contains 371905 sequences. (Running on oeis4.)