login
A319000
Regular triangle where T(n,k) is the number of finite multisets of positive integers with product n and sum k.
59
1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,10
EXAMPLE
Triangle begins:
1
0 1
0 0 1
0 0 0 2
0 0 0 0 1
0 0 0 0 1 2
0 0 0 0 0 0 1
0 0 0 0 0 2 2 3
0 0 0 0 0 1 1 1 2
0 0 0 0 0 0 1 1 1 2
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 3 3 3 3 4
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 2
0 0 0 0 0 0 0 3 3 4 4 4 4 4 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 2 2 3 3 3 3 3 3 3 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 3 3 4
Row 12 {0,0,0,0,0,0,2,3,3,3,3,4} corresponds to the partitions (C = 12):
. . . . . . (43) (62) (621) (6211) (62111) (C)
(322) (431) (4311) (43111) (431111) (621111)
(3221) (32211) (322111) (3221111) (4311111)
(32211111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[k], Times@@#==n&]], {n, 20}, {k, n}]
CROSSREFS
Row sums are A319916. Column sums are A319005. Last column is A001055.
Sequence in context: A112765 A105966 A318950 * A083915 A083892 A354451
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved