OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
EXAMPLE
Sequence of reversed integer partitions begins: (1), (2), (3), (4), (2 2), (5), (6), (7), (8), (9), (10), (1 2 3), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (1 1 2 4), (24), (25), (26), (27), (28), (1 1 2 2 2), (29), (30).
MAPLE
q:= n-> (l-> mul(i, i=l)=add(i, i=l))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..300])[]; # Alois P. Heinz, Mar 27 2019
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[300], Total[primeMS[#]]===Times@@primeMS[#]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 30 2018
STATUS
approved