login
A301987
Heinz numbers of integer partitions whose product is equal to their sum.
62
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 227, 229, 233, 239, 241, 251
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
EXAMPLE
Sequence of reversed integer partitions begins: (1), (2), (3), (4), (2 2), (5), (6), (7), (8), (9), (10), (1 2 3), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (1 1 2 4), (24), (25), (26), (27), (28), (1 1 2 2 2), (29), (30).
MAPLE
q:= n-> (l-> mul(i, i=l)=add(i, i=l))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..300])[]; # Alois P. Heinz, Mar 27 2019
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[300], Total[primeMS[#]]===Times@@primeMS[#]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 30 2018
STATUS
approved