login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions whose product is equal to their sum.
84

%I #10 Mar 27 2019 12:33:18

%S 2,3,5,7,9,11,13,17,19,23,29,30,31,37,41,43,47,53,59,61,67,71,73,79,

%T 83,84,89,97,101,103,107,108,109,113,127,131,137,139,149,151,157,163,

%U 167,173,179,181,191,193,197,199,200,211,223,227,229,233,239,241,251

%N Heinz numbers of integer partitions whose product is equal to their sum.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Alois P. Heinz, <a href="/A301987/b301987.txt">Table of n, a(n) for n = 1..10000</a>

%e Sequence of reversed integer partitions begins: (1), (2), (3), (4), (2 2), (5), (6), (7), (8), (9), (10), (1 2 3), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (1 1 2 4), (24), (25), (26), (27), (28), (1 1 2 2 2), (29), (30).

%p q:= n-> (l-> mul(i, i=l)=add(i, i=l))(map(i->

%p numtheory[pi](i[1])$i[2], ifactors(n)[2])):

%p select(q, [$1..300])[]; # _Alois P. Heinz_, Mar 27 2019

%t primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Select[Range[300],Total[primeMS[#]]===Times@@primeMS[#]&]

%Y Cf. A001055, A002865, A003963, A056239, A276024, A284640, A296150, A299701, A301957, A301988.

%K nonn

%O 1,1

%A _Gus Wiseman_, Mar 30 2018