login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318950
Regular triangle where T(n,k) is the number of factorizations of n into factors > 1 with sum k.
24
0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,10
EXAMPLE
Triangle begins:
0
0 1
0 0 1
0 0 0 2
0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 2 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1
Row 12 {0,0,0,0,0,0,2,1,0,0,0,1} corresponds to the factorizations:
. . . . . . (3*4) (2*6) . . . (12)
(2*2*3)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Total[#]==k&]], {n, 20}, {k, n}]
CROSSREFS
Row sums are A001055. Column sums are A002865.
Sequence in context: A138088 A112765 A105966 * A319000 A083915 A083892
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved