login
A318952
a(n) = Sum_{d|n} (sigma(n) mod sigma(d)).
1
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 5, 0, 0, 0, 5, 0, 6, 0, 6, 0, 0, 0, 8, 1, 0, 1, 10, 0, 0, 0, 4, 0, 0, 0, 31, 0, 0, 0, 12, 0, 0, 0, 12, 8, 0, 0, 30, 1, 6, 0, 16, 0, 6, 0, 9, 0, 0, 0, 30, 0, 0, 8, 13, 0, 0, 0, 18, 0, 0, 0, 67, 0, 0, 8, 22, 0, 0, 0, 40, 6, 0, 0
OFFSET
1,12
LINKS
FORMULA
a(A005117(n)) = 0.
a(A168363(n)) = 1.
EXAMPLE
For n = 4; a(4) = (7 mod 1) + (7 mod 3) + (7 mod 7) = 0 + 1 + 0 = 1.
MATHEMATICA
Table[Sum[Mod[DivisorSigma[1, n], DivisorSigma[1, d]], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Sep 06 2018 *)
PROG
(Magma) [&+[SumOfDivisors(n) mod SumOfDivisors(d): d in Divisors(n)] : n in [1..1000]]
(PARI) a(n) = my(sn = sigma(n)); sumdiv(n, d, sn % sigma(d)); \\ Michel Marcus, Sep 06 2018
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Jaroslav Krizek, Sep 05 2018
STATUS
approved