login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278715
Table T read by rows. T(k, h) gives the numerators of the Dedekind sums s(h, k) with gcd(h, k) = 1 or 0 otherwise.
2
0, 1, -1, 1, 0, -1, 1, 0, 0, -1, 5, 0, 0, 0, -5, 5, 1, -1, 1, -1, -5, 7, 0, 1, 0, -1, 0, -7, 14, 4, 0, -4, 4, 0, -4, -14, 3, 0, 0, 0, 0, 0, 0, 0, -3, 15, 5, 3, 3, -5, 5, -3, -3, -5, -15, 55, 0, 0, 0, -1, 0, 1, 0, 0, 0, -55, 11, 4, 1, -1, 0, -4, 4, 0, 1, -1, -4, -11, 13, 0, 3, 0, 3, 0, 0, 0, -3, 0, -3, 0, -13, 91, 7, 0, 19, 0, 0, -7, 7, 0, 0, -19, 0, -7, -91
OFFSET
2,11
COMMENTS
For the denominators see A278716.
The Dedekind sums are s(h,k) = Sum_{r=1..k-1} (r/k)*(h*r/k - floor(h*r/k) - 1/2) = Sum_{r=1..k-1} ((r/k))*((h*r)/k) with the period 1 sawtooth function ((x)) = x - floor(x) - 1/2 if x is not an integer and 0 otherwise. One assumes gcd(h,k) = 1, and for other h, k values the table has 0's. See the references Apostol pp. 52, 61-69, 72-73 and Ayoub pp. 168, 191. See also the Weisstein link.
In order to have a regular triangle T(k, h) one starts with k >= 2 and h = 1, 2, ..., k-1. s(1,1) = 0.
REFERENCES
Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.
Ayoub, R., An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963.
LINKS
Eric Weisstein's World of Mathematics, Dedekind Sum.
FORMULA
T(k ,h) = numerator(s(h,k)) with the Dedekind sums s(h,k) given in a comment above and gcd(h,k) = 1. k >=2, h = 1, 2, ..., k-1. If gcd(h,k) is not 1 then T(k,h) is put to 0 (in the example o is used). Note that T(k,h) can vanish also for gcd(h,k) = 1.
EXAMPLE
The triangle T(k,h) begins (if gcd(k,h) is not 1 we use o instead of 0):
k\h 1 2 3 4 5 6 7 8 9 10 11 12
2: 0
3: 1 -1
4: 1 o -1
5: 1 0 0 -1
6: 5 o o o -5
7: 5 1 -1 1 -1 -5
8: 7 o 1 o -1 o -7
9: 14 4 o -4 4 o -4 -14
10: 3 o 0 o o o 0 o -3
11: 15 5 3 3 -5 5 -3 -3 -5 -15
12: 55 o o o -1 o 1 o o o -55
13: 11 4 1 -1 0 -4 4 0 1 -1 -4 -11
...
n = 14: 13 o 3 o 3 o o o -3 o -3 o -13,
n = 15: 91 7 0 19 0 0 -7 7 0 0 -19 0 -7 -91.
...
---------------------------------------------
The rational triangle s(h,k) begins (here o is used if gcd(h,k) is not 1):
k\h 1 2 3 4 5 6 7
2: 0
3: 1/18 -1/18
4: 1/8 o -1/8
5: 1/5 0 0 -1/5
6: 5/18 o o o -5/18
7: 5/14 1/14 -1/14 1/14 -1/14 -5/14
8: 7/16 o 1/16 o -1/16 o -7/16
...
n = 9: 14/27 4/27 o -4/27 4/27 o -4/27 -14/27,
n = 10: 3/5 o 0 o o o 0 o -3/5,
n = 11: 15/22 5/22 3/22 3/22 -5/22 5/22 -3/22 -3/22 -5/22 -15/22,
n = 12: 55/72 o o o -1/72 o 1/72 o o o -55/72,
n = 13: 11/13 4/13 1/13 -1/13 0 -4/13 4/13 0 1/13 -1/13 -4/13 -11/13,
n = 14: 13/14 o 3/14 o 3/14 o o o -3/14 o -3/14 o -13/14,
n = 15: 1/90 7/18 o 19/90 o o -7/18 7/18 o o -19/90 o -7/18 -91/90.
...
--------------------------------------------
MATHEMATICA
T[n_, k_]:= If[GCD[n, k] == 1, Sum[(j/n)*(k*j/n - Floor[k*j/n] - 1/2), {j, 1, n - 1}], 0]; Numerator[Table[T[n, k], {n, 2, 15}, {k, 1, n-1}]] //Flatten (* G. C. Greubel, Nov 22 2018 *)
PROG
(PARI) {T(n, k) = if(gcd(n, k)==1, sum(j=1, n-1, (j/n)*(k*j/n - floor(k*j/n) - 1/2)), 0)};
for(n=2, 15, for(k=1, n-1, print1(numerator(T(n, k)), ", "))) \\ G. C. Greubel, Nov 22 2018
(Magma) [[GCD(n, k) eq 1 select Numerator((&+[(j/n)*(k*j/n - Floor(k*j/n) - 1/2): j in [1..(n-1)]])) else 0: k in [1..(n-1)]]: n in [2..15]]; // G. C. Greubel, Nov 22 2018
(Sage)
def T(n, k):
if gcd(n, k)==1:
return numerator(sum((j/n)*(k*j/n - floor(k*j/n) - 1/2) for j in (1..(n-1))))
elif gcd(n, k)!=1:
return 0
else:
0
[[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Nov 22 2018
CROSSREFS
Cf. A278716, A264388/A264389 (h=1), A278713/A278714 (h=2 odd k).
Sequence in context: A329639 A318952 A089877 * A333947 A368662 A368660
KEYWORD
sign,tabl,frac,easy
AUTHOR
Wolfdieter Lang, Nov 28 2016
STATUS
approved