login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278718
Numerators of A189733: periodic sequence repeating [0, 1, 1, 1, 0, -1].
0
0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0
OFFSET
0
COMMENTS
See A189733.
FORMULA
G.f.: x*(1+x^2-x^3)/((1-x)*(1-x+x^2)*(1+x+x^2)).
From Wesley Ivan Hurt, Oct 03 2017: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n > 4.
a(n) = (1+(-1)^floor((n-1)/3))/2-floor((n+1)/6)+floor(n/6). (End)
MATHEMATICA
b[m_, n_] := b[m, n] = Which[m == n, 0, n == m + 1, (-1)^(n + 1)/n, n > m, b[m, n - 1] + b[m + 1, n - 1], n < m, b[m - 1, n + 1] - b[m - 1, n]]; a[n_] := b[0, n] // Numerator; Table[a[n], {n, 0, 100}]
(* or, simply: *)
a[n_] := {0, 1, 1, 1, 0, -1}[[Mod[n, 6]+1]]; Table[a[n], {n, 0, 100}]
PROG
(PARI) Vec(x*(1+x^2-x^3)/((1-x)*(1-x+x^2)*(1+x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Dec 02 2016
CROSSREFS
KEYWORD
frac,sign,easy
AUTHOR
STATUS
approved