OFFSET
0
COMMENTS
The n-th row has length A070939(n); a nondecreasing sequence.
Each row, when interpreted as a finite sequence can be mapped via Euler's Transform to familiar integer sequences.
FORMULA
EXAMPLE
The triangle begins: 0 1 11 01 011 111 101 001 0011 1011 1111 0111 0101 1101 1001 0001 00011 10011 11011 11111 ...
MAPLE
B:= proc(n) option remember; local b; b:= ilog2(n);
`if`(n<=1, n, zip((x, y)->x+y, [B(2^(b+1)-1-n)], [0$b, 1], 0)[])
end:
seq(B(n), n=0..30); # Alois P. Heinz, May 21 2012
MATHEMATICA
zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; B[n_] := B[n] = With[{b = Floor[Log[2, n]]}, If[n <= 1, {n}, zip[B[2^(b+1)-1-n], Append[Array[0&, b], 1]]]]; Table[B[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Feb 13 2017, after Alois P. Heinz *)
PROG
(Magma) // Recursive
N := 5; s := [[]];
for n in [1..N] do
for j in [#s..1 by -1] do
Append(~s, Append(s[j], 1));
Append(~s[j], 0);
end for;
end for;
&cat[IntegerToSequence(SequenceToInteger(b, 2), 2):b in s];
(Magma) // Direct
B:=func<n|[(s[i]+s[i+1])mod 2:i in[1..#s-1]]cat[s[#s]]where s is IntegerToSequence(n, 2)>;
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Alford Arnold, Sep 29 2009
EXTENSIONS
Edited by Jason Kimberley, Mar 31 2012
STATUS
approved