The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165188 Interleaving of A014125 and zero followed by A014125. 4
 1, 0, 3, 1, 6, 3, 11, 6, 18, 11, 27, 18, 39, 27, 54, 39, 72, 54, 94, 72, 120, 94, 150, 120, 185, 150, 225, 185, 270, 225, 321, 270, 378, 321, 441, 378, 511, 441, 588, 511, 672, 588, 764, 672, 864, 764, 972, 864, 1089, 972, 1215, 1089, 1350, 1215, 1495, 1350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This sequence convolved with A000217 (without initial term 0) yields A164680. See A164680 for similar convolutions. A165188 convolved with A000217 yields sequence A164680. This is to be expected since A000217 can be associated with partition 1+1+1, A164680 with partition 1+1+1+2+2+2+3 and A165188 with partition 2+2+2+3 by observing their unreduced generating functions and verified by generating the sequences by converting the partitions into finite sequences and using Euler's Transform. Thus partition 1+1+1 yields the finite sequence (3); partition 2+2+2+3 yields the finite sequence (0,3,1); and, when combined, partition 1+1+1+2+2+2+3 yields (3,3,1). - Alford Arnold, Sep 24 2009 LINKS Index entries for linear recurrences with constant coefficients, signature (0,3,1,-3,-3,1,3,0,-1). FORMULA a(n) = -a(n-1)+2*a(n-2)+3*a(n-3)-3*a(n-5)-2*a(n-6)+a(n-7)+a(n-8)+1 for n > 8; a(1)=1, a(2)=0, a(3)=3, a(4)=1, a(5)=6, a(6)=3, a(7)=11, a(8)=6. - Klaus Brockhaus, Sep 15 2009 G.f.: x/((1-x)^4*(1+x)^3*(1+x+x^2)). - Klaus Brockhaus, Sep 15 2009 a(n) = (2*n^3+21*n^2+63*n+49)/288-(-1)^n*(9+7*n+n^2)/32+A057078(n)/9. - R. J. Mathar, Sep 17 2009 Euler transform of length 3 sequence [ 0, 3, 1]. - Michael Somos, Feb 01 2015 G.f.: x / ((1 - x^2)^3 * (1 - x^3)). - Michael Somos, Feb 01 2015 a(n) = -a(-7 - n) for all n in Z. a(n+3) - a(n) = 0 if n odd else (n+6) * (n+4) / 8. - Michael Somos, Feb 01 2015 a(2*n + 1) = a(2*n + 4) = A014125(n) for all n in Z. - Michael Somos, Feb 01 2015 EXAMPLE A014125 begins 1,3,6,11,18,27,..., thus this sequence begins 1,0,3,1,6,3,11,6,18,11,27,18,... . G.f. = x + 3*x^3 + x^4 + 6*x^5 + 3*x^6 + 11*x^7 + 6*x^8 + 18*x^9 + 11*x^10 + ... MATHEMATICA a[ n_] := Module[{s = 1, m = n}, If[ n < 0, s = -1; m = -7 - n]; s SeriesCoefficient[ x / ((1 - x^2)^3 (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Feb 01 2015 *) LinearRecurrence[{0, 3, 1, -3, -3, 1, 3, 0, -1}, {1, 0, 3, 1, 6, 3, 11, 6, 18}, 60] (* Harvey P. Dale, Apr 14 2018 *) PROG (PARI) /* first computes u = A014125 as second bisection of A001400, then interleaves */ {m=28; u=vector(m, n, polcoeff(1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))+O(x^(2*n)), 2*n-1)); vector(2*m, k, if(k%2==1, u[(k+1)/2], if(k==2, 0, u[k/2-1])))} /* Klaus Brockhaus, Sep 15 2009 */ (PARI) {a(n) = my(s=1); if( n<0, s=-1; n=-7-n); s * polcoeff( x / ((1 - x^2)^3 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, Feb 01 2015 */ (MAGMA) I:=[1, 0, 3, 1, 6, 3, 11, 6]; [n le 8 select I[n] else -Self(n-1)+2*Self(n-2)+3*Self(n-3)-3*Self(n-5)-2*Self(n-6)+Self(n-7)+Self(n-8)+1: n in [1..60]]; // Vincenzo Librandi, Jun 24 2015 CROSSREFS Cf. A014125, A000217, A164680, A001400. Sequence in context: A226132 A121443 A008795 * A294778 A132180 A207630 Adjacent sequences:  A165185 A165186 A165187 * A165189 A165190 A165191 KEYWORD nonn AUTHOR Alford Arnold, Sep 13 2009 EXTENSIONS Edited and extended by Klaus Brockhaus, Sep 15 2009 Linear recurrence link and signature correct by Michel Marcus, Jun 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 09:22 EDT 2021. Contains 346422 sequences. (Running on oeis4.)