OFFSET
1,2
COMMENTS
or of A038163 with A022003 or of A057524 with A027656 or of A014125 with the aerated version of A000217,
or of A002624 with A103221, or of A002623 with A008731, or of other combinations of splitting the signature -/3,3,1 into two components.
If we apply the enumeration of Molien series as described in A139672,
this is row 45=9*5 of a table of values related to Molien series, i.e., the
This is associated with the root system E6, and can be described using the additive function on the affine E6 diagram:
1
|
2
|
1--2--3--2--1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
FORMULA
a(n) = round( -(-1)^n*(n+3)*(n+7)/256 +(6*n^6 +180*n^5 +2070*n^4 +11400*n^3 +30429*n^2 +34290*n +9785)/103680 ) - R. J. Mathar, Mar 19 2012
EXAMPLE
MAPLE
seq(coeff(series(x/((1-x)^3*(1-x^2)^3*(1-x^3)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Jan 13 2020
MATHEMATICA
Rest@CoefficientList[Series[x/((1-x)^3*(1-x^2)^3*(1-x^3)), {x, 0, 40}], x] (* G. C. Greubel, Jan 13 2020 *)
PROG
(Sage)
x=PowerSeriesRing(QQ, 'x', 40).gen()
1/((1-x)^3*(1-x^2)^3*(1-x^3))
(PARI) Vec(1/(1-x)^3/(1-x^2)^3/(1-x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^3*(1-x^2)^3*(1-x^3)) )); // G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, Aug 21 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 22 2009
Corrected link to index entries - R. J. Mathar, Aug 26 2009
STATUS
approved