login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139672
Convolution of A008619 and A001400.
3
1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257, 346, 451, 587, 746, 946, 1177, 1461, 1786, 2178, 2623, 3151, 3746, 4443, 5223, 6126, 7131, 8283, 9558, 11007, 12603, 14403, 16377, 18588, 21003, 23692, 26618, 29858, 33372, 37244, 41430, 46022, 50972
OFFSET
1,2
COMMENTS
This is row 21 of a table of values related to Molien series. It is the product of the sequence on row 3 (A008619) with the sequence on row 7 (A001400).
This table may be constructed by moving the rows of table A008284 to prime locations and generating the composite locations by multiplication in a manner similar to the calculation illustrated in the present sequence.
Rows 1 thru 20 and 22 thru 25 are as follows:
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 1, -3, 0, -1, 2, 2, -1, 0, -3, 1, 2, -1).
FORMULA
G.f.: x/((x^2+x+1)*(x^2+1)*(x+1)^3*(x-1)^6). - Alois P. Heinz, Nov 10 2008
a(n)= -A049347(n)/27 +(2*n+11)*(6*n^4+132*n^3+914*n^2+2068*n+1055)/69120 -(-1)^n*(51/512+n^2/256+11*n/256+A057077(n)/32 ). - R. J. Mathar, Nov 21 2008
MAPLE
a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # Alois P. Heinz, Nov 10 2008
MATHEMATICA
CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 1, -3, 0, -1, 2, 2, -1, 0, -3, 1, 2, -1}, {0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257}, 50] (* Harvey P. Dale, Feb 17 2016 *)
CROSSREFS
Sequence in context: A268346 A165271 A308827 * A308873 A308933 A308998
KEYWORD
nonn
AUTHOR
Alford Arnold, Apr 29 2008, May 01 2008
EXTENSIONS
More terms from Alois P. Heinz, Nov 10 2008
Corrected A-number in definition. Added formula. - R. J. Mathar, Nov 21 2008
STATUS
approved