login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097701
Expansion of 1/((1-x)^2*(1-x^2)^2*(1-x^3)).
8
1, 2, 5, 9, 16, 25, 39, 56, 80, 109, 147, 192, 249, 315, 396, 489, 600, 726, 874, 1040, 1232, 1446, 1690, 1960, 2265, 2600, 2975, 3385, 3840, 4335, 4881, 5472, 6120, 6819, 7581, 8400, 9289, 10241, 11270, 12369, 13552, 14812, 16164, 17600, 19136
OFFSET
0,2
COMMENTS
Number of partitions of 5*n+12 or 5*n+13 into 5 parts (+-) 3 mod 5. For example, the a(3) = 9 partitions of 27 are: [18,3,2,2,2], [13,8,2,2,2], [17,3,3,2,2], [12,7,3,3,2], [7,7,7,3,3], [13,7,3,2,2], [8,8,7,2,2], [12,8,3,2,2], [8,7,7,3,2]. - Richard Turk, Apr 23 2016
Number of partitions of n into two kinds of parts 1, two kinds of parts 2, and one kind of parts 3. - Joerg Arndt, Apr 24 2016
FORMULA
a(n) = floor((n + 1) * (9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288 + 1/2). - Tani Akinari, Oct 07 2012
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9) for n >= 9, with initial values as shown. - Harvey P. Dale, May 20 2013
a(n) = (6*n*(9*((-1)^n + 31) + n*(n*(n + 18) + 112)) + 243*(-1)^n + 128*cos((2*Pi*n)/3) + 1357)/1728. - Ilya Gutkovskiy, Apr 23 2016
a(n) = 1 + 175*n/288 + 47*n^2/144 + n^3/16 + n^4/288 + (9/16 + n/8)*floor(n/2) + 2*floor(n/3)/9 + floor((n+1)/3)/9. - Vaclav Kotesovec, Apr 24 2016
a(n) = a(-9-n) for all n in Z. - Michael Somos, Aug 16 2023
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 39*x^6 + ... - Michael Somos, Aug 16 2023
MAPLE
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card<r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=5, stack): seq(count(subs(r=3, ZL), size=m), m=3..47) ; # Zerinvary Lajos, Mar 09 2007
MATHEMATICA
CoefficientList[Series[1/((1-x)^2(1-x^2)^2(1-x^3)), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 1, -3, -1, 1, 3, -1, -2, 1}, {1, 2, 5, 9, 16, 25, 39, 56, 80}, 50] (* Harvey P. Dale, May 20 2013 *)
a[ n_] := Round[(n + 1)*(9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288]; (* Michael Somos, Aug 16 2023*)
PROG
(PARI) a(n)=1/576*(2*n^4+36*n^3+224*n^2+558*n+495+(18*n+81)*(-1)^n-64*(if(n%3, 1, 0)))
(PARI) x='x+O('x^99); Vec(1/((1-x)^2*(1-x^2)^2*(1-x^3))) \\ Altug Alkan, Sep 18 2016
CROSSREFS
First differences of A002625. Partial sums of A008763.
Sequence in context: A346822 A284917 A007979 * A362548 A225596 A211881
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Aug 24 2004
STATUS
approved