login
A007979
Expansion of (1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)).
1
1, 2, 5, 9, 16, 25, 39, 56, 79, 107, 142, 183, 233, 290, 357, 433, 520, 617, 727, 848, 983, 1131, 1294, 1471, 1665, 1874, 2101, 2345, 2608, 2889, 3191, 3512, 3855, 4219, 4606, 5015, 5449, 5906
OFFSET
0,2
LINKS
A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (Abstract, pdf, ps).
FORMULA
a(n) = floor((2*n^3+3*n^2+24*n+18)/18). - Tani Akinari, Jun 26 2013
G.f.: (1+x^2)*(1+x^4) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Sep 07 2017
MATHEMATICA
CoefficientList[Series[(1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2012 *)
LinearRecurrence[{2, 0, -1, -1, 0, 2, -1}, {1, 2, 5, 9, 16, 25, 39}, 40] (* Harvey P. Dale, Nov 19 2024 *)
CROSSREFS
Sequence in context: A175287 A346822 A284917 * A097701 A362548 A225596
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved