Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 19 2024 14:19:36
%S 1,2,5,9,16,25,39,56,79,107,142,183,233,290,357,433,520,617,727,848,
%T 983,1131,1294,1471,1665,1874,2101,2345,2608,2889,3191,3512,3855,4219,
%U 4606,5015,5449,5906
%N Expansion of (1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)).
%H Vincenzo Librandi, <a href="/A007979/b007979.txt">Table of n, a(n) for n = 0..1000</a>
%H A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (<a href="http://neilsloane.com/doc/mckay.txt">Abstract</a>, <a href="http://neilsloane.com/doc/mckay.pdf">pdf</a>, <a href="http://neilsloane.com/doc/mckay.ps">ps</a>).
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,-1,0,2,-1).
%F a(n) = floor((2*n^3+3*n^2+24*n+18)/18). - _Tani Akinari_, Jun 26 2013
%F G.f.: (1+x^2)*(1+x^4) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - _R. J. Mathar_, Sep 07 2017
%t CoefficientList[Series[(1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)),{x,0,40}],x] (* _Vincenzo Librandi_, Feb 25 2012 *)
%t LinearRecurrence[{2,0,-1,-1,0,2,-1},{1,2,5,9,16,25,39},40] (* _Harvey P. Dale_, Nov 19 2024 *)
%K nonn,easy,changed
%O 0,2
%A _N. J. A. Sloane_.