|
|
A284917
|
|
Lexicographically earliest infinite sequence of positive integers such that the Taxicab distance is unique to each pair of distinct points ((n, a(n)), (k, a(k)).
|
|
2
|
|
|
1, 1, 2, 5, 9, 16, 25, 38, 58, 72, 87, 112, 136, 169, 190, 237, 274, 344, 383, 456, 545, 572, 640, 752, 798, 891, 944, 989, 1131, 1283, 1365, 1492, 1540, 1788, 1862, 1994, 2218, 2342, 2472, 2741, 2885, 3114, 3312, 3548, 3753, 3953, 4251, 4386, 4731, 4802, 5073
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Conjecture: This sequence is strictly increasing for n > 1.
|
|
LINKS
|
|
|
EXAMPLE
|
Let p_n = (n, a(n)).
For n = 4, a(4) = 5 because
d(p_1, p_4) = 3 = d(p_1, p_3) if a(4) = 1,
d(p_3, p_4) = 1 = d(p_1, p_2) if a(4) = 2,
d(p_3, p_4) = 2 = d(p_2, p_3) if a(4) = 3,
d(p_3, p_4) = 3 = d(p_1, p_3) if a(4) = 4, therefore
a(4) = 5, the least value that does not create a contradiction.
|
|
MATHEMATICA
|
dq[p_, q_] := Total@Abs[p - q]; good[w_] := Catch[Do[If[ MemberQ[di, dq[w, P[[i]]]], Throw@False], {i, Length@P}]; True]; di = P = {}; n = 0; While[n < 51, n++; k = 1; While[! good[{n, k}], k++]; di = Join[di, dq[{n, k}, #] & /@ P]; AppendTo[P, {n, k}]]; Last /@ P (* Giovanni Resta, Apr 06 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|