The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284917 Lexicographically earliest infinite sequence of positive integers such that the Taxicab distance is unique to each pair of distinct points ((n, a(n)), (k, a(k)). 2
 1, 1, 2, 5, 9, 16, 25, 38, 58, 72, 87, 112, 136, 169, 190, 237, 274, 344, 383, 456, 545, 572, 640, 752, 798, 891, 944, 989, 1131, 1283, 1365, 1492, 1540, 1788, 1862, 1994, 2218, 2342, 2472, 2741, 2885, 3114, 3312, 3548, 3753, 3953, 4251, 4386, 4731, 4802, 5073 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: This sequence is strictly increasing for n > 1. LINKS Peter Kagey and Giovanni Resta, Table of n, a(n) for n = 1..2000 (first 300 terms from Peter Kagey) EXAMPLE Let p_n = (n, a(n)). For n = 4, a(4) = 5 because d(p_1, p_4) = 3 = d(p_1, p_3) if a(4) = 1, d(p_3, p_4) = 1 = d(p_1, p_2) if a(4) = 2, d(p_3, p_4) = 2 = d(p_2, p_3) if a(4) = 3, d(p_3, p_4) = 3 = d(p_1, p_3) if a(4) = 4, therefore a(4) = 5, the least value that does not create a contradiction. MATHEMATICA dq[p_, q_] := Total@Abs[p - q]; good[w_] := Catch[Do[If[ MemberQ[di, dq[w, P[[i]]]], Throw@False], {i, Length@P}]; True]; di = P = {}; n = 0; While[n < 51, n++; k = 1; While[! good[{n, k}], k++]; di = Join[di, dq[{n, k}, #] & /@ P]; AppendTo[P, {n, k}]]; Last /@ P (* Giovanni Resta, Apr 06 2017 *) CROSSREFS Cf. A005282 (Chebyshev distance), A284916 (Euclidean distance). Sequence in context: A138226 A175287 A346822 * A007979 A097701 A362548 Adjacent sequences: A284914 A284915 A284916 * A284918 A284919 A284920 KEYWORD nonn AUTHOR Peter Kagey, Apr 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 06:53 EDT 2023. Contains 363045 sequences. (Running on oeis4.)