login
A211881
Difference between sum of largest parts and sum of smallest parts of all partitions of n into an even number of parts.
3
0, 0, 0, 1, 2, 5, 9, 16, 26, 41, 65, 95, 142, 202, 293, 403, 568, 766, 1054, 1399, 1886, 2469, 3276, 4237, 5538, 7094, 9162, 11628, 14856, 18704, 23670, 29590, 37130, 46109, 57428, 70885, 87685, 107634, 132324, 161595, 197545, 240091, 291990, 353302, 427624
OFFSET
0,5
LINKS
FORMULA
a(n) = A222048(n) - A222045(n).
a(n) = A116686(n) - A211870(n).
EXAMPLE
a(6) = 9: partitions of 6 into an even number of parts are [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], [3,3], [4,2], [5,1], difference between sum of largest parts and sum of smallest parts is (1+2+3+3+4+5) - (1+1+1+3+2+1) = 18 - 9 = 9.
MAPLE
g:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+
`if`(i>n, [0, 0], g(n, i+1)+(l-> [l[2], l[1]])(g(n-i, i)))
end:
b:= proc(n, i) option remember;
[`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+
`if`(n<i, [0, 0], (l-> [l[2], l[1]])(b(n-i, i))))
end:
a:= n-> g(n, 1)[2] -b(n, n)[2]:
seq(a(n), n=0..50);
MATHEMATICA
g[n_, i_] := g[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, g[n, i+1] + Reverse[g[n-i, i]]]; b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[n<i, {0, 0}, Reverse[b[n-i, i]]]]; a[n_] := g[n, 1][[2]] - b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 13 2013
STATUS
approved