login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001402 Number of partitions of n into at most 6 parts.
(Formerly M0662 N0243)
17
1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 8442, 9192 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also number of partitions of n into parts <= 6: a(n) = A026820(n,6). - Reinhard Zumkeller, Jan 21 2010
Counts unordered closed walks of weight n on a single vertex graph containing 6 loops of weights 1, 2, 3, 4, 5 and 6. - David Neil McGrath, Apr 11 2015
Number of different distributions of n+21 identical balls in 6 boxes as x,y,z,p,q,m where 0<x<y<z<p<q<m. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) could be the total number of non-isomorphic geodetic graphs of diameter n>=2 homeomorphic to the Petersen graph. - Carlos Enrique Frasser, May 24 2018
REFERENCES
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Washington Bomfim, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
G. E. Andrews, Partitions: At the Interface of q-Series and Modular Forms, The Ramanujan Journal 7, 385-400 (2003), Eq.(3.10).
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, American Journal of Mathematics, Vol. 2, No. 1 (Mar., 1879), pp. 71-84 (14 pages).
A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419. [Annotated scanned copy]
C. E. Frasser and G. N. Vostrov, Geodetic Graphs Homeomorphic to a Given Geodetic Graph, arXiv:1611.01873 [cs.DM], 2016. [p. 27]
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
FORMULA
a(n) = 1 + (a(n-2) + a(n-3) + a(n-4)) - (2*a(n-7) + 2*a(n-8) + a(n-9)) + (a(n-11) + 2*a(n-12) + 2*a(n-13)) - (a(n-16) + a(n-17) + a(n-18)) + (a(n-20)). - Norman J. Meluch (norm(AT)iss.gm.com), Mar 09 2000
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Alois P. Heinz, Aug 22 2011
a(n) ~ n^5 / 86400. - Charles R Greathouse IV, Aug 23 2011
a(n) = (167 + (2325 + (15400 + (47250 + 54000*m + 4500*r)*m + 3150*r + 150*r^2)*m + X(r))*m + Y(r))*m/6 + Z(r) where m = floor(n/60), r = n mod 60 and X, Y, Z are functions of r (see Maple program below). - Alois P. Heinz, Aug 23 2011
a(n) = floor((2 + 3*(floor(n/3) + floor(-n/3))) * (floor(n/3)+1)/54 + (6*n^5 + 315*n^4 + 6160*n^3 + 55125*n^2 + 219905*n + 485700)/518400 + (n+1)*(n+20)*(-1)^n/768). - Tani Akinari, Aug 05 2013
a(n) = a(n-1) + a(n-2) - a(n-5) - 2*a(n-7) + a(n-9) + a(n-10) + a(n-11) + a(n-12) - 2*a(n-14) - a(n-16) + a(n-19) + a(n-20) - a(n-21). - David Neil McGrath, Apr 11 2015
a(n+6) = a(n) + A001401(n). - Ece Uslu, Esin Becenen, Jan 11 2016
a(n) = round((n+11)*((6*n^4 + 249*n^3 + 2071*n^2 - 4931*n + 40621)/518400 + floor(n/2)*(n+10)/192 + (floor((n+1)/3) + 2*floor(n/3))/54)). - Washington Bomfim, Jan 15 2021
EXAMPLE
The number of partitions of 6 into parts less than or equal to 6 is a(6)=11. These are (6)(51)(42)(33)(411)(321)(222)(3111)(2211)(21111)(111111). - David Neil McGrath, Apr 11 2015
a(4) = 5, i.e., {1,2,3,4,5,10},{1,2,3,4,6,9},{1,2,3,4,7,8},{1,2,3,5,6,8},{1,2,4,5,6,7} Number of different distributions of 25 identical balls in 6 boxes as x,y,z,p,q,m where 0 < x < y < z < p < q < m. - Ece Uslu, Esin Becenen, Jan 11 2016
MAPLE
with(combstruct):ZL7:=[S, {S=Set(Cycle(Z, card<7))}, unlabeled]: seq(count(ZL7, size=n), n=0..50); # Zerinvary Lajos, Sep 24 2007
a:= n-> (Matrix(21, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1][i] else 0 fi)^n)[1, 1]; seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2008
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=6)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..50); # Zerinvary Lajos, Mar 21 2009
## more efficient for large arguments (try with 10^100 or 100^1000):
a:= proc(n) local m, r; m := iquo (n, 60, 'r');
(167 +(2325 +(15400 +(47250 +54000*m +4500*r)*m +3150*r +150*r^2)*m
+[0, 795, 1875, 3030, 4500, 6075, 7995, 10050, 12480, 15075, 18075, 21270, 24900, 28755, 33075, 37650, 42720, 48075, 53955, 60150, 66900, 73995, 81675, 89730, 98400, 107475, 117195, 127350, 138180, 149475, 161475, 173970, 187200, 200955, 215475, 230550, 246420, 262875, 280155, 298050, 316800, 336195, 356475, 377430, 399300, 421875, 445395, 469650, 494880, 520875, 547875, 575670, 604500, 634155, 664875, 696450, 729120, 762675, 797355, 832950][r+1])*m
+[0, 63, 207, 348, 570, 795, 1143, 1482, 1968, 2475, 3135, 3828, 4722, 5643, 6795, 8010, 9468, 11007, 12843, 14760, 17010, 19383, 22107, 24978, 28260, 31695, 35583, 39672, 44238, 49035, 54375, 59958, 66132, 72603, 79695, 87120, 95238, 103707, 112923, 122550, 132960, 143823, 155547, 167748, 180870, 194535, 209163, 224382, 240648, 257535, 275535, 294228, 314082, 334683, 356535, 379170, 403128, 427947, 454143, 481260][r+1])*m/6
+[1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 8442, 9192, 9975, 10829, 11720, 12692, 13702, 14800, 15944, 17180, 18467][r+1] end:
seq(a(n), n=0..100); # Alois P. Heinz, Aug 22 2011
A := [1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282];
a := proc(n) option remember; if n < 21 then A[n+1] else 1+(a(n-2)+a(n-3)+a(n-4))-(2*a(n-7)+2*a(n-8)+a(n-9))+(a(n-11)+2*a(n-12)+2*a(n-13))-(a(n-16)+a(n-17)+a(n-18))+(a(n-20)) fi end:
seq(a(i), i=0..50); # Peter Luschny, Aug 23 2011
## program using quasi-polynomials; see article by Sills and Zeilberger:
a:= m-> subs (n=m, add ([[n^5/86400 +7*n^4/11520 +77*n^3/6480 +245*n^2/2304 +43981*n/103680 +199577/345600], [-n^2/768 -7*n/256 -581/4608, n^2/768 +7*n/256 +581/4608], [-n/162 -19/324, -n/162 -23/324, n/81 +7/54], [1/32, -1/32, -1/32, 1/32], [1/25, 0, -1/25, -2/25, 2/25], [1/36, -1/36, -1/18, -1/36, 1/36, 1/18]][r][1 +irem (m-1+r, r)], r=1..6)):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 24 2011
## using Andrews-style expressions; see article by Sills and Zeilberger:
a:= n-> 1 +31*n^2/288 +floor(n/4)/16 -floor(n/4 +1/2)/16 +7*n^4/11520 +floor(n/5)/5 +n^5/86400 -(n^2/384 +7*n/128 +581/2304)*n +(n^2/192 +7*n/64 +581/1152) *floor(n/2) -(n/54 +61/324)*n +(n/54 +19/108) *floor((n+1)/3) +(n/27 +7/18) *floor(n/3) +floor(n/6)/18 -floor(n/6 +2/3)/36 +floor(n/6 +1/3)/18 +floor((n+1)/6)/12 +713*n/1800 +77*n^3/6480:
seq(a(n), n=0..100); # Alois P. Heinz, Aug 24 2011
MATHEMATICA
CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^5)*(1 - x^6)), {x, 0, 60} ], x ]
(* Second program: *)
T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; a[n_] := T[n, 6]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz's code for A026820 *)
PROG
(PARI) a(n)=floor((6*n^5+315*n^4+6160*n^3+55125*n^2+(216705+9600*(n%3<1))*n+527500)/518400+(n+1)*(n+20)*(-1)^n/768) \\ Tani Akinari, May 27 2014
(PARI) a(n)={round((n+11)*((6*n^4+249*n^3+2071*n^2-4931*n+40621)/518400+n\2*(n+10) /192+( (n+1)\3+ n\3*2 )/54))};
vector(60, n, n--; a(n)) \\ Washington Bomfim, Jan 16 2021
CROSSREFS
Essentially same as A026812. Cf. A037145 (first differences), A288341 (partial sums).
a(n) = A008284(n+6, 6), n >= 0.
A194197(n) = a(60*n). - Alois P. Heinz, Aug 23 2011
Sequence in context: A341870 A234666 A026812 * A008629 A347572 A363068
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 18:23 EDT 2023. Contains 363076 sequences. (Running on oeis4.)