login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of A008619 and A001400.
3

%I #12 Feb 17 2016 09:48:32

%S 1,2,5,9,17,27,44,65,97,136,191,257,346,451,587,746,946,1177,1461,

%T 1786,2178,2623,3151,3746,4443,5223,6126,7131,8283,9558,11007,12603,

%U 14403,16377,18588,21003,23692,26618,29858,33372,37244,41430,46022,50972

%N Convolution of A008619 and A001400.

%C This is row 21 of a table of values related to Molien series. It is the product of the sequence on row 3 (A008619) with the sequence on row 7 (A001400).

%C This table may be constructed by moving the rows of table A008284 to prime locations and generating the composite locations by multiplication in a manner similar to the calculation illustrated in the present sequence.

%C Rows 1 thru 20 and 22 thru 25 are as follows:

%C A000012 A008619 A000027 A001399 A002620 A001400 A000217 A006918 A000601 A001401 A002623 A001402 A002621 A097701 A000292 A008630 A002624 A008631 A057524 A002622 A008632 A001752 A117485.

%H Alois P. Heinz, <a href="/A139672/b139672.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -3, 0, -1, 2, 2, -1, 0, -3, 1, 2, -1).

%F G.f.: x/((x^2+x+1)*(x^2+1)*(x+1)^3*(x-1)^6). - _Alois P. Heinz_, Nov 10 2008

%F a(n)= -A049347(n)/27 +(2*n+11)*(6*n^4+132*n^3+914*n^2+2068*n+1055)/69120 -(-1)^n*(51/512+n^2/256+11*n/256+A057077(n)/32 ). - _R. J. Mathar_, Nov 21 2008

%p a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # _Alois P. Heinz_, Nov 10 2008

%t CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,0,-1,2,2,-1,0,-3,1,2,-1},{0,1,2,5,9,17,27,44,65,97,136,191,257},50] (* _Harvey P. Dale_, Feb 17 2016 *)

%K nonn

%O 1,2

%A _Alford Arnold_, Apr 29 2008, May 01 2008

%E More terms from _Alois P. Heinz_, Nov 10 2008

%E Corrected A-number in definition. Added formula. - _R. J. Mathar_, Nov 21 2008