OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1).
FORMULA
G.f.: 1/[(1+x^2)*(1-x^3)*(1-x)^4*(1-x^5)*(1+x)^2]. (Corrected Mar 31 2018)
a(n)= 2*a(n-1) -a(n-3) -a(n-5) +2*a(n-8) -a(n-11) -a(n-13) +2*a(n-15) -a(n-16).
G.f.: 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)). - Michael Somos, Apr 24 2014
Euler transform of length 5 sequence [ 2, 1, 1, 1, 1]. - Michael Somos, Apr 24 2014
a(n) = a(n-1) + A001401(n). - Michael Somos, Apr 24 2014
a(n) = round((n+1)*(6*n^4+234*n^3+3326*n^2+20674*n+50651+675*(-1)^n)/86400). - Tani Akinari, May 05 2014
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 29*x^6 + 42*x^7 + 60*x^8 + ...
a(2) = 4 with partitions 0, 1, 2, 1+1. a(3) = 7 with partitions 0, 1, 2, 1+1, 3, 2+1, 1+1+1. - Michael Somos, Apr 24 2014
MATHEMATICA
CoefficientList[Series[1/((1 - x)^2 (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 25 2014 *)
LinearRecurrence[{2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1}, {1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408}, 48] (* Georg Fischer, Feb 27 2019 *)
PROG
(PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 5, 1-x^i))) \\ Altug Alkan, Mar 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved