This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002622 Number of partitions of at most n into at most 5 parts. (Formerly M1053 N0395) 12
 1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408, 509, 628, 769, 933, 1125, 1346, 1601, 1892, 2225, 2602, 3029, 3509, 4049, 4652, 5326, 6074, 6905, 7823, 8837, 9952, 11178, 12520, 13989, 15591, 17338, 19236, 21298, 23531, 25949, 28560, 31378, 34412 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi) P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy] FORMULA G.f.: 1/[(1+x^2)*(1-x^3)*(1-x)^4*(1-x^5)*(1+x)^2]. (Corrected Mar 31 2018) a(n)= 2*a(n-1) -a(n-3) -a(n-5) +2*a(n-8) -a(n-11) -a(n-13) +2*a(n-15) -a(n-16). G.f.: 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)). - Michael Somos, Apr 24 2014 Euler transform of length 5 sequence [ 2, 1, 1, 1, 1]. - Michael Somos, Apr 24 2014 a(n) = a(n-1) + A001401(n). - Michael Somos, Apr 24 2014 a(n) = round((n+1)*(6*n^4+234*n^3+3326*n^2+20674*n+50651+675*(-1)^n)/86400). - Tani Akinari, May 05 2014 EXAMPLE G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 29*x^6 + 42*x^7 + 60*x^8 + ... a(2) = 4 with partitions 0, 1, 2, 1+1. a(3) = 7 with partitions 0, 1, 2, 1+1, 3, 2+1, 1+1+1. - Michael Somos, Apr 24 2014 MATHEMATICA CoefficientList[Series[1/((1 - x)^2 (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 25 2014 *) PROG (PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 5, 1-x^i))) \\ Altug Alkan, Mar 30 2018 CROSSREFS Cf. A001401 (first differences). Column 5 of A092905. Sequence in context: A090853 A266464 A103231 * A035301 A035297 A272465 Adjacent sequences:  A002619 A002620 A002621 * A002623 A002624 A002625 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 16:40 EDT 2018. Contains 313809 sequences. (Running on oeis4.)