The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002624 Expansion of (1-x)^(-3) * (1-x^2)^(-2). (Formerly M2723 N1091) 15
 1, 3, 8, 16, 30, 50, 80, 120, 175, 245, 336, 448, 588, 756, 960, 1200, 1485, 1815, 2200, 2640, 3146, 3718, 4368, 5096, 5915, 6825, 7840, 8960, 10200, 11560, 13056, 14688, 16473, 18411, 20520, 22800, 25270, 27930, 30800, 33880, 37191, 40733, 44528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Given an irregular triangular matrix M with the triangular numbers in every column shifted down twice for columns >0, A002624 = M * [1, 2, 3, ...]. Example: row 4 of triangle M = (15, 6, 1), then (15, 6, 1) dot (1, 2, 3) = a(4) = 30 = (15 + 12 + 3). - Gary W. Adamson, Mar 02 2010 The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums of A139600 are related to the sequence given above, e.g., Ze2(n) = a(n-1) - a(n-2) - a(n-3) + 4*a(n-4), with a(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011 8*a(n) + 16*a(n+1) + 16*a(n+2) is the number of ways to place 3 queens on an (n+6) X (n+6) chessboard so that they diagonally attack each other exactly twice. Also true for the nonexistent terms for n=-1, n=-2 and n=-3 assuming that they are zeros. In graph-theory representation they thus form the corresponding open walk (Eulerian trail) with V={1,2,3} vertices and length of 2. - Antal Pinter, Dec 31 2015 a(n) is the number of partitions of n into parts with three kinds of 1 and two kinds of 2. - Joerg Arndt, Jan 18 2016 REFERENCES Steven Edwards and W. Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., 55 (2017), 356-366. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy] INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 204 Antal Pinter, Numerical solution of the k=3 Queens problem, 2011, Q(n) at p.8. Antal Pinter, Software utility for enumerating positions of non-attacking and attacking chess pieces , Backtrack_V7Pro Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1). FORMULA a(n-1) = ( n^4 +10*n^3 +32*n^2 +32*n +(6*n +15)*(n mod 2) )/96. From Antal Pinter, Oct 03 2014: (Start) a(n) = C(n + 2, 2) + 2*C(n, 2) + 3*C(n - 2, 2) + 4*C(n - 4, 2) + ... a(n) = Sum_{i = 1..z} i*C(n + 4 - 2i, 2)  where z = (2*n + 3 + (-1)^n)/4. a(n) = (3*(2*n + 7)*(-1)^n + 2*n^4 + 28*n^3 + 136*n^2 + 266*n + 171)/192. (End) a(n) = A007009(n+1) - A001752(n-1) for n>0. - Antal Pinter, Dec 27 2015 a(n) = Sum_{j=0..n+1} A006918(j). - Richard Turk, Feb 18 2016 MAPLE A002624:=-1/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation MATHEMATICA f[n_] := Block[{m = n - 1}, (m^4 + 10m^3 + 32m^2 + 32m + (6m + 15)Mod[m, 2])/96]; Table[ f[n], {n, 2, 45}] (* Or *) CoefficientList[ Series[1/((1 - x)^3 (1 - x^2)^2), {x, 0, 44}], x] (* Robert G. Wilson v, Feb 26 2005 *) PROG (MAGMA) [( (n+1)^4 +10*(n+1)^3 +32*(n+1)^2 +32*(n+1) +(6*(n+1) +15)*((n+1) mod 2) )/96 : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011 (PARI) Vec(1/(1-x)^3/(1-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Apr 19 2012 (PARI) a(n)=(n^4 + 14*n^3 + 68*n^2 + 136*n - n%2*(6*n + 21))/96 + 1 \\ Charles R Greathouse IV, Feb 18 2016 CROSSREFS Cf. A047659, A139600, A180662. Sequence in context: A167616 A009439 A000233 * A293358 A227265 A295960 Adjacent sequences:  A002621 A002622 A002623 * A002625 A002626 A002627 KEYWORD nonn,easy AUTHOR EXTENSIONS Formula and more terms from Frank Ellermann, Mar 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 19:26 EST 2020. Contains 338769 sequences. (Running on oeis4.)