The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002624 Expansion of (1-x)^(-3) * (1-x^2)^(-2). (Formerly M2723 N1091) 16
 1, 3, 8, 16, 30, 50, 80, 120, 175, 245, 336, 448, 588, 756, 960, 1200, 1485, 1815, 2200, 2640, 3146, 3718, 4368, 5096, 5915, 6825, 7840, 8960, 10200, 11560, 13056, 14688, 16473, 18411, 20520, 22800, 25270, 27930, 30800, 33880, 37191, 40733, 44528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Given an irregular triangular matrix M with the triangular numbers in every column shifted down twice for columns >0, A002624 = M * [1, 2, 3, ...]. Example: row 4 of triangle M = (15, 6, 1), then (15, 6, 1) dot (1, 2, 3) = a(4) = 30 = (15 + 12 + 3). - Gary W. Adamson, Mar 02 2010 The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums of A139600 are related to the sequence given above, e.g., Ze2(n) = a(n-1) - a(n-2) - a(n-3) + 4*a(n-4), with a(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011 8*a(n) + 16*a(n+1) + 16*a(n+2) is the number of ways to place 3 queens on an (n+6) X (n+6) chessboard so that they diagonally attack each other exactly twice. Also true for the nonexistent terms for n=-1, n=-2 and n=-3 assuming that they are zeros. In graph-theory representation they thus form the corresponding open walk (Eulerian trail) with V={1,2,3} vertices and length of 2. - Antal Pinter, Dec 31 2015 a(n) is the number of partitions of n into parts with three kinds of 1 and two kinds of 2. - Joerg Arndt, Jan 18 2016 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366. E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy] Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 204 Antal Pinter, Numerical solution of the k=3 Queens problem, 2011, Q(n) at p.8. Antal Pinter, Software utility for enumerating positions of non-attacking and attacking chess pieces , Backtrack_V7Pro Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1). FORMULA a(n-1) = ( n^4 +10*n^3 +32*n^2 +32*n +(6*n +15)*(n mod 2) )/96. From Antal Pinter, Oct 03 2014: (Start) a(n) = C(n + 2, 2) + 2*C(n, 2) + 3*C(n - 2, 2) + 4*C(n - 4, 2) + ... a(n) = Sum_{i = 1..z} i*C(n + 4 - 2i, 2) where z = (2*n + 3 + (-1)^n)/4. a(n) = (3*(2*n + 7)*(-1)^n + 2*n^4 + 28*n^3 + 136*n^2 + 266*n + 171)/192. (End) a(n) = A007009(n+1) - A001752(n-1) for n>0. - Antal Pinter, Dec 27 2015 a(n) = Sum_{j=0..n+1} A006918(j). - Richard Turk, Feb 18 2016 MAPLE A002624:=-1/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation MATHEMATICA f[n_] := Block[{m = n - 1}, (m^4 + 10m^3 + 32m^2 + 32m + (6m + 15)Mod[m, 2])/96]; Table[ f[n], {n, 2, 45}] (* Or *) CoefficientList[ Series[1/((1 - x)^3 (1 - x^2)^2), {x, 0, 44}], x] (* Robert G. Wilson v, Feb 26 2005 *) PROG (Magma) [( (n+1)^4 +10*(n+1)^3 +32*(n+1)^2 +32*(n+1) +(6*(n+1) +15)*((n+1) mod 2) )/96 : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011 (PARI) Vec(1/(1-x)^3/(1-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Apr 19 2012 (PARI) a(n)=(n^4 + 14*n^3 + 68*n^2 + 136*n - n%2*(6*n + 21))/96 + 1 \\ Charles R Greathouse IV, Feb 18 2016 CROSSREFS Cf. A047659, A139600, A180662. Sequence in context: A167616 A009439 A000233 * A293358 A227265 A295960 Adjacent sequences: A002621 A002622 A002623 * A002625 A002626 A002627 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Formula and more terms from Frank Ellermann, Mar 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 04:40 EDT 2024. Contains 372703 sequences. (Running on oeis4.)