login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139600 Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards. 45
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.

The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Peter Luschny, Figurate number — a very short introduction. With plots from Stefan Friedrich Birkner.

Omar E. Pol, Polygonal numbers, An alternative illustration of initial terms.

Index to sequences related to polygonal numbers

FORMULA

T(n,k) = n*(k-1)*k/2+k.

T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016

EXAMPLE

The square array of nonnegatives together with polygonal numbers begins:

=========================================================

....................... A   A   .   .   A    A    A    A

....................... 0   0   .   .   0    0    1    1

....................... 0   0   .   .   1    1    3    3

....................... 0   0   .   .   6    7    9    9

....................... 0   0   .   .   9    3    6    6

....................... 0   1   .   .   5    2    0    0

....................... 4   2   .   .   7    9    6    7

=========================================================

Nonnegatives . A001477: 0,  1,  2,  3,  4,   5,   6,   7, ...

Triangulars .. A000217: 0,  1,  3,  6, 10,  15,  21,  28, ...

Squares ...... A000290: 0,  1,  4,  9, 16,  25,  36,  49, ...

Pentagonals .. A000326: 0,  1,  5, 12, 22,  35,  51,  70, ...

Hexagonals ... A000384: 0,  1,  6, 15, 28,  45,  66,  91, ...

Heptagonals .. A000566: 0,  1,  7, 18, 34,  55,  81, 112, ...

Octagonals ... A000567: 0,  1,  8, 21, 40,  65,  96, 133, ...

9-gonals ..... A001106: 0,  1,  9, 24, 46,  75, 111, 154, ...

10-gonals .... A001107: 0,  1, 10, 27, 52,  85, 126, 175, ...

11-gonals .... A051682: 0,  1, 11, 30, 58,  95, 141, 196, ...

12-gonals .... A051624: 0,  1, 12, 33, 64, 105, 156, 217, ...

...

=========================================================

The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.

MAPLE

T:= (n, k)-> n*(k-1)*k/2+k:

seq(seq(T(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2018

MATHEMATICA

T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)

PROG

(Python 3)

def A139600Row(n):

    x, y = 1, 1

    yield 0

    while True:

        yield x

        x, y = x + y + n, y + n

for n in range(8):

        R = A139600Row(n)

print([next(R) for _ in range(11)]) # Peter Luschny, Aug 04 2019

CROSSREFS

Cf. A001477, A139601, A139617, A139618, A139620.

A formal extension negative n is in A326728.

Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Sequence in context: A179329 A089112 A155584 * A198321 A325003 A166278

Adjacent sequences:  A139597 A139598 A139599 * A139601 A139602 A139603

KEYWORD

nonn,tabl,easy

AUTHOR

Omar E. Pol, Apr 27 2008

EXTENSIONS

Edited by Omar E. Pol, Jan 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:41 EST 2019. Contains 329914 sequences. (Running on oeis4.)