The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139602 The smallest prime p that makes the pair p+/-6n both primes while no other pair of p+/-6k+6*n, 0
 11, 19, 61, 43, 97, 163, 191, 229, 283, 223, 743, 991, 541, 457, 877, 1327, 1049, 1321, 1733, 1307, 1987, 6011, 2971, 5153, 2029, 8693, 2551, 4789, 5407, 2129, 6473, 4481, 4889, 4217, 7951, 11743, 13789, 9851, 7253, 11491, 20393, 17231, 9749, 20747, 6599, 13873, 16369, 15461, 17123, 13451, 9967, 26959, 21089, 41863, 27437, 26003, 40189, 18661, 16673, 64693 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Dickson's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Mar 22 2011 2a(n) = (p-6n) + (p+6n). LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 EXAMPLE For n = 1, 11-6n=5, 11+6n=17, are both primes, and for any prime number p smaller than 11, it is impossible that p-6 is prime; For n = 2, 19-6n=7, 19+6n=31, are both primes,while 19+6*1=25 is not prime. For primes p<19, either p+/-6 are prime pairs, or p+/-12 are not a prime pair; ... for n = 6, 163-6n=127, 163+6n=199, are both primes,while 163+6*k, k=1,2,4 and 163-6*k, k=3,5 are not primes. For primes p<163, either exists prime pair p+/-6k, 0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:39 EDT 2021. Contains 347607 sequences. (Running on oeis4.)