OFFSET
1,2
COMMENTS
Binomial transform of [1, 2, 3, 4, 2, 0, 0, 0, ...].
The Kn4 triangle sums of A139600 are given by this sequence. For the definitions of the Kn4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From R. J. Mathar, Jun 08 2008: (Start)
O.g.f.: x*(1-2*x+3*x^2)/(1-x)^5.
a(n) = A014628(n+1). (End)
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 3*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011, corrected by Eric Rowland, Aug 16 2017
a(n) = n*(n + 1)*(n^2 - 3*n + 8)/12. - Johannes W. Meijer, Apr 29 2011, corrected by Eric Rowland, Aug 16 2017
EXAMPLE
a(4) = 20 = (1, 3, 3, 1) dot (1, 2, 3, 4) = (1 + 6 + 9 + 4).
a(4) = sum of row 4 terms of triangle A134392: (8 + 7 + 4 + 1).
MATHEMATICA
Table[(n^4 - 2*n^3 + 5*n^2 + 8*n)/12, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 8, 20, 45}, 50] (* Harvey P. Dale, May 28 2018 *)
PROG
(Magma) [Binomial(n+3, 4)-2*Binomial(n+2, 4)+ 3*Binomial(n+1, 4): n in [1..40]]; // Vincenzo Librandi, Feb 04 2013
(PARI) x='x+O('x^99); Vec(x*(1-2*x+3*x^2)/(1-x)^5) \\ Altug Alkan, Aug 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 23 2007
STATUS
approved