OFFSET
0,6
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
EXAMPLE
A(3,4) = 33, because f([1,1,1]) = [1,2,3], (f^2)([1,1,1]) = [3,3,4], (f^3)([1,1,1]) = [4,6,9], (f^4)([1,1,1]) = [9,12,12], and 9+12+12 = 33.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 6, 8, 12, ...
3, 6, 10, 19, 33, 63, ...
4, 10, 20, 46, 100, 220, ...
5, 15, 35, 94, 242, 633, ...
MAPLE
f:= l-> sort([seq(sort(l, `>`)[i]*i, i=1..nops(l))]):
A:= (n, k)-> add(i, i=(f@@k)([1$n])):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
f[L_List] := f[L] = Sort[Reverse[Sort[L]]*Range[Length[L]]];
A[0, _] = 0; A[n_, 0] := n; A[n_, k_] := Total[Nest[f, Range[n], k-1]];
Table[A[n, k-n], {k, 0, 15}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jun 07 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Oct 10 2009
STATUS
approved