login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166278
Square array A(n,k), n,k>=0, read by antidiagonals: A(n,k) is the total element sum of the k-fold f transform applied to the length n sequence of 1's. And f returns a sorted result after multiplying the elements in its input sequence with 1, 2, 3,... in descending size order.
3
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 6, 10, 10, 5, 0, 1, 8, 19, 20, 15, 6, 0, 1, 12, 33, 46, 35, 21, 7, 0, 1, 16, 63, 100, 94, 56, 28, 8, 0, 1, 24, 111, 220, 242, 172, 84, 36, 9, 0, 1, 32, 201, 488, 633, 514, 290, 120, 45, 10, 0, 1, 48, 369, 1104, 1643, 1518, 984, 460, 165, 55, 11
OFFSET
0,6
LINKS
EXAMPLE
A(3,4) = 33, because f([1,1,1]) = [1,2,3], (f^2)([1,1,1]) = [3,3,4], (f^3)([1,1,1]) = [4,6,9], (f^4)([1,1,1]) = [9,12,12], and 9+12+12 = 33.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 6, 8, 12, ...
3, 6, 10, 19, 33, 63, ...
4, 10, 20, 46, 100, 220, ...
5, 15, 35, 94, 242, 633, ...
MAPLE
f:= l-> sort([seq(sort(l, `>`)[i]*i, i=1..nops(l))]):
A:= (n, k)-> add(i, i=(f@@k)([1$n])):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
f[L_List] := f[L] = Sort[Reverse[Sort[L]]*Range[Length[L]]];
A[0, _] = 0; A[n_, 0] := n; A[n_, k_] := Total[Nest[f, Range[n], k-1]];
Table[A[n, k-n], {k, 0, 15}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jun 07 2016 *)
CROSSREFS
Columns k=0-3 give: A001477, A000217, A000292, A070893.
Rows n=0-2 give: A000004, A000012, A029744(k+2).
Main diagonal gives A261490.
Sequence in context: A139600 A198321 A325003 * A365515 A316269 A242379
KEYWORD
easy,nonn,tabl
AUTHOR
Alois P. Heinz, Oct 10 2009
STATUS
approved