OFFSET
0,6
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
FORMULA
T(n, k) is given by (0,1,0,0,0,0,0,0,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Sum_{k=0..n} T(n, k)*x^k = x*((x+1)^n - x^n) for n > 0.
G.f.: (1 - (1+y)*x + y*(1+y)*x^2)/((1 - (1+y)*x)*(1-y*x)).
T(n, k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1, T(2,0) = 0, T(2,1) = 1, T(2,2) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 12 2014
EXAMPLE
Triangle begins :
1
0, 1
0, 1, 2
0, 1, 3, 3
0, 1, 4, 6, 4
0, 1, 5, 10, 10, 5
0, 1, 6, 15, 20, 15, 6
MATHEMATICA
A198321[n_, k_] := If[k == 0, Boole[n == 0], Binomial[n, k - 1]];
Table[A198321[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 23 2024 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Nov 01 2011
EXTENSIONS
New name using a formula of the author by Peter Luschny, Oct 23 2024
STATUS
approved