login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198322
The Matula-Goebel numbers of the rooted trees that have palindromic Wiener polynomials.
0
1, 2, 7, 8, 56, 76, 107, 147, 163, 292, 454, 839, 1433, 4221, 5833, 6137, 7987, 8626, 16216, 17059, 17128, 17764, 23438, 25672, 36812, 41203, 45952, 46428, 51768, 60635, 83009, 86716, 86908, 88321, 91951, 93534, 94542, 99141, 100142, 108848, 120357, 124783, 133741, 136768, 137941, 140079, 142424, 145404, 145654
OFFSET
1,2
COMMENTS
The Wiener polynomials are assumed to have zero constant terms.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
REFERENCES
G. Caporossi, A. A. Dobrynin, I. Gutman, and P. Hansen, Trees with palindromic Hosoya polynomials, Graph Theory Notes of New York, XXXVI, 1999, 10-16.
LINKS
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
The Wiener polynomial W(n,x) of the rooted tree corresponding to the Matula-Goebel number n is given in A196059. It is palindromic if and only if x^{1+degree(W(n,x))}*W(n,1/x)=W(n,x).
EXAMPLE
7 is in the sequence because the rooted tree with Matula-Goebel number 7 is Y; 3 distances are equal to 1 and 3 distances are equal to 2; Wiener polynomial is 3x+3x^2.
MAPLE
with(numtheory): W := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(W(pi(n))+x*R(pi(n))+x)) else sort(expand(W(r(n))+W(s(n))+R(r(n))*R(s(n)))) end if end proc: A := {}: for n to 100000 do if expand(x^(1+degree(W(n)))*subs(x = 1/x, W(n))) = W(n) then A := `union`(A, {n}) else end if end do: A;
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, Expand[x*R[PrimePi[n]] + x], True, Expand[R[r[n]] + R[s[n]]]];
W[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, Expand[W[PrimePi[n]] + x*R[PrimePi[n]] + x], True, Expand[W[r[n]] + W[s[n]] + R[r[n]]*R[s[n]]]];
A = {};
Do[If[n == 1 || Expand[x^(1 + Exponent[W[n], x])*(W[n] /. x -> 1/x)] == W[n], Print[n]; A = Union[A, {n}]], {n, 1, 100000}] // Quiet;
A (* Jean-François Alcover, Jun 18 2024, after Maple code *)
CROSSREFS
Cf. A196059.
Sequence in context: A001493 A000637 A250715 * A372422 A371331 A222134
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 24 2011
STATUS
approved