login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089112
Square array T(r,j) (r >= 1, j >= 1) read by antidiagonals, where T(r,j) is the sign twisted convoluted convolved Fibonacci number H_j^(r) (see the Moree paper).
0
1, 1, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 3, 5, 5, 0, 1, 3, 7, 11, 8, 0, 1, 4, 10, 17, 19, 13, 0, 1, 5, 13, 25, 37, 37, 21, 0, 1, 5, 16, 38, 64, 77, 65, 34, 0, 1, 5, 20, 54, 102, 146, 158, 120, 55, 0, 1, 6, 24, 70, 154, 259, 331, 314, 210, 89, 0, 1, 7, 28, 89, 222, 425, 626, 710, 611, 376, 144
OFFSET
1,6
LINKS
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
P. Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
EXAMPLE
Triangle begins:
1
1 1
0 1 2
0 1 3 3
0 1 3 5 5
Array begins:
1, 1, 2, 3, 5, 8, 13, 21, ...,
1, 1, 3, 5, 11, 19, 37, 65, ...,
0, 1, 3, 7, 17, 37, 77, 158, ...,
0, 1, 3, 10, 25, 64, 146, 331, ...,
0, 1, 4, 13, 38, 102, 259, 626, ...,
0, 1, 5, 16, 54, 154, 425, 1098, ...,
0, 1, 5, 20, 70, 222, 654, 1817, ...,
0, 1, 5, 24, 89, 309, 967, 2871, ...,
...
MAPLE
with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 30)): (-1)^r*coeff(Wser, z^j) end: seq(seq(m(n-q+1, q), q=1..n), n=1..17); # for the sequence read by antidiagonals
with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): (-1)^r*coeff(Wser, z^j) end: matrix(10, 10, m); # for the square array
MATHEMATICA
f[z_] = -1/(1-z-z^2); m[r_, j_] := (-1)^r *(1/r)*z*DivisorSum[r, MoebiusMu[#] * f[z^#]^(r/#) &] // SeriesCoefficient[#, {z, 0, j}] &;
Table[m[r - j + 1, j], {r, 1, 12}, {j, 1, r}] // Flatten (* Jean-François Alcover, Mar 25 2018, translated from Maple *)
CROSSREFS
Sequence in context: A331103 A267724 A179329 * A155584 A139600 A198321
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved