OFFSET
1,6
LINKS
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
P. Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
EXAMPLE
Triangle begins:
1
1 1
0 1 2
0 1 3 3
0 1 3 5 5
Array begins:
1, 1, 2, 3, 5, 8, 13, 21, ...,
1, 1, 3, 5, 11, 19, 37, 65, ...,
0, 1, 3, 7, 17, 37, 77, 158, ...,
0, 1, 3, 10, 25, 64, 146, 331, ...,
0, 1, 4, 13, 38, 102, 259, 626, ...,
0, 1, 5, 16, 54, 154, 425, 1098, ...,
0, 1, 5, 20, 70, 222, 654, 1817, ...,
0, 1, 5, 24, 89, 309, 967, 2871, ...,
...
MAPLE
with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 30)): (-1)^r*coeff(Wser, z^j) end: seq(seq(m(n-q+1, q), q=1..n), n=1..17); # for the sequence read by antidiagonals
with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): (-1)^r*coeff(Wser, z^j) end: matrix(10, 10, m); # for the square array
MATHEMATICA
f[z_] = -1/(1-z-z^2); m[r_, j_] := (-1)^r *(1/r)*z*DivisorSum[r, MoebiusMu[#] * f[z^#]^(r/#) &] // SeriesCoefficient[#, {z, 0, j}] &;
Table[m[r - j + 1, j], {r, 1, 12}, {j, 1, r}] // Flatten (* Jean-François Alcover, Mar 25 2018, translated from Maple *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved