login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089115
Convoluted convolved Fibonacci numbers G_8^(r).
0
21, 65, 158, 331, 626, 1098, 1817, 2871, 4367, 6435, 9230, 12935, 17764, 23965, 31824, 41667, 53865, 68837, 87054, 109043, 135391, 166750, 203840, 247455, 298467, 357831, 426590, 505880, 596936, 701096, 819808, 954635, 1107261
OFFSET
1,1
LINKS
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
FORMULA
Empirical g.f.: -x*(4*x^12 -24*x^11 +60*x^10 -80*x^9 +59*x^8 -20*x^7 -4*x^5 +25*x^4 -62*x^3 +83*x^2 -61*x +21) / ((x -1)^7*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jul 31 2013
MAPLE
with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(r, 8), r=1..50);
MATHEMATICA
f[z_] := 1/(1 - z - z^2);
m[r_] := (1/r)*z*Sum[MoebiusMu[d]*f[z^d]^(r/d), {d, Divisors[r]}];
Table[SeriesCoefficient[m[r], {z, 0, 8}], {r, 1, 33}] (* Jean-François Alcover, Dec 06 2017, from Maple *)
CROSSREFS
Sequence in context: A020211 A014641 A259677 * A259244 A020309 A048713
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved