login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014641
Odd octagonal numbers: (2n+1)*(6n+1).
14
1, 21, 65, 133, 225, 341, 481, 645, 833, 1045, 1281, 1541, 1825, 2133, 2465, 2821, 3201, 3605, 4033, 4485, 4961, 5461, 5985, 6533, 7105, 7701, 8321, 8965, 9633, 10325, 11041, 11781, 12545, 13333, 14145, 14981, 15841, 16725, 17633, 18565, 19521, 20501, 21505
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
LINKS
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.2.
FORMULA
a(n) = a(n-1) + 24*n - 4, with n > 0, a(0)=1. - Vincenzo Librandi, Dec 28 2010
G.f.: (1 + 18*x + 5*x^2)/(1 - 3*x + 3*x^2 - x^3). - Colin Barker, Jan 06 2012
a(n) = A289873(6*n+2). - Hugo Pfoertner, Jul 15 2017
From Peter Bala, Jan 22 2018: (Start)
This is the polynomial Qbar(2,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials.
a(n) = (1/4^n) * Sum_{k = 0..n} (2*k + 1)^4*binomial(2*n + 1, n - k).
a(n-1) = (2/4^n) * binomial(2*n,n) * ( 1 + 3^4*(n - 1)/(n + 1) + 5^4*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*log(3))/8.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + sqrt(3)*log(2+sqrt(3))/4. (End)
E.g.f.: exp(x)*(1 + 20*x + 12*x^2). - Stefano Spezia, Apr 16 2022
a(n) = A016754(n) + 4*A014105(n). - Leo Tavares, May 20 2022
MAPLE
A014641:=n->(2*n+1)*(6*n+1); seq(A014641(n), n=0..50); # Wesley Ivan Hurt, Jun 08 2014
MATHEMATICA
Table[(2n + 1)(6n + 1), {n, 0, 49}] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(Magma) [ (2*n+1)*(6*n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 08 2014
(PARI) a(n)=(2*n+1)*(6*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(GAP) List([0..50], n->(2*n+1)*(6*n+1)); # Muniru A Asiru, Feb 05 2019
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Dec 11 1999
EXTENSIONS
More terms from Patrick De Geest
Better description from N. J. A. Sloane
STATUS
approved