OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
G.f.: -2*x*(2*x^3+21*x^2+8*x+9) / ((x+1)^2*(x-1)^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
a(0)=0, a(1)=18, a(2)=34, a(3)=112, a(4)=148, a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - Harvey P. Dale, Jun 16 2014
From Colin Barker, Jan 27 2016: (Start)
a(n) = (20*n^2-10*(-1)^n*n+4*n-(-1)^n+1)/2.
a(n) = 10*n^2-3*n for n even.
a(n) = 10*n^2+7*n+1 for n odd.
(End)
MATHEMATICA
Select[Table[(n(5n-3))/2, {n, 0, 100}], EvenQ] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {0, 18, 34, 112, 148}, 50] (* Harvey P. Dale, Jun 16 2014 *)
PROG
(PARI) concat(0, Vec(2*x*(9+8*x+21*x^2+2*x^3)/((1-x)^3*(1+x)^2) + O(x^100))) \\ Colin Barker, Jan 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended and description corrected by Patrick De Geest
STATUS
approved