login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd octagonal numbers: (2n+1)*(6n+1).
14

%I #67 May 21 2022 08:29:44

%S 1,21,65,133,225,341,481,645,833,1045,1281,1541,1825,2133,2465,2821,

%T 3201,3605,4033,4485,4961,5461,5985,6533,7105,7701,8321,8965,9633,

%U 10325,11041,11781,12545,13333,14145,14981,15841,16725,17633,18565,19521,20501,21505

%N Odd octagonal numbers: (2n+1)*(6n+1).

%C Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - _Omar E. Pol_, Jul 18 2012

%H Muniru A Asiru, <a href="/A014641/b014641.txt">Table of n, a(n) for n = 0..5000</a>

%H Richard P. Brent, <a href="https://arxiv.org/abs/1407.3533">Generalising Tuenter's binomial sums</a>, arXiv:1407.3533 [math.CO], 2014.

%H Richard P. Brent, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Brent/brent5.html">Generalising Tuenter's binomial sums</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.2.

%H Leo Tavares, <a href="/A014641/a014641.jpg">Illustration: Square Block Stars</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = a(n-1) + 24*n - 4, with n > 0, a(0)=1. - _Vincenzo Librandi_, Dec 28 2010

%F G.f.: (1 + 18*x + 5*x^2)/(1 - 3*x + 3*x^2 - x^3). - _Colin Barker_, Jan 06 2012

%F a(n) = A289873(6*n+2). - _Hugo Pfoertner_, Jul 15 2017

%F From _Peter Bala_, Jan 22 2018: (Start)

%F This is the polynomial Qbar(2,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials.

%F a(n) = (1/4^n) * Sum_{k = 0..n} (2*k + 1)^4*binomial(2*n + 1, n - k).

%F a(n-1) = (2/4^n) * binomial(2*n,n) * ( 1 + 3^4*(n - 1)/(n + 1) + 5^4*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)

%F From _Amiram Eldar_, Feb 27 2022: (Start)

%F Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*log(3))/8.

%F Sum_{n>=0} (-1)^n/a(n) = Pi/8 + sqrt(3)*log(2+sqrt(3))/4. (End)

%F E.g.f.: exp(x)*(1 + 20*x + 12*x^2). - _Stefano Spezia_, Apr 16 2022

%F a(n) = A016754(n) + 4*A014105(n). - _Leo Tavares_, May 20 2022

%p A014641:=n->(2*n+1)*(6*n+1); seq(A014641(n), n=0..50); # _Wesley Ivan Hurt_, Jun 08 2014

%t Table[(2n + 1)(6n + 1), {n, 0, 49}] (* _Harvey P. Dale_, Mar 24 2011 *)

%o (Magma) [ (2*n+1)*(6*n+1) : n in [0..50] ]; // _Wesley Ivan Hurt_, Jun 08 2014

%o (PARI) a(n)=(2*n+1)*(6*n+1) \\ _Charles R Greathouse IV_, Jun 17 2017

%o (GAP) List([0..50],n->(2*n+1)*(6*n+1)); # _Muniru A Asiru_, Feb 05 2019

%Y Cf. A000567, A001082, A014642, A014793, A014794, A243201, A289873.

%Y Cf. A160485, A245244.

%Y Cf. A016754, A014105.

%K nonn,easy

%O 0,2

%A _Mohammad K. Azarian_, Dec 11 1999

%E More terms from _Patrick De Geest_

%E Better description from _N. J. A. Sloane_