The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245244 Triangle of coefficients of the Pbar polynomials, read by rows. 10
 1, -3, 4, 25, -56, 32, -427, 1228, -1184, 384, 12465, -41840, 52416, -29184, 6144, -555731, 2079892, -3076288, 2258688, -829440, 122880, 35135945, -142843304, 237829600, -208562688, 102279168, -26787840, 2949120, -2990414715, 12987478876, -23672564832, 23581133952, -13947525120, 4929576960, -970260480 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Pbar(r,n) is a polynomial of degree r defined by the recurrence Pbar(r+1,n) = (2*n-1)^2 * Pbar(r,n) - 4*(n-1)^2 * Pbar(r,n-1) with initial condition Pbar(0,n) = 1. REFERENCES B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 20 and p. 23. LINKS R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. R. P. Brent, Generalizing Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2. L. Carlitz, Explicit formulas for the Dumont-Foata polynomials, Discrete Mathematics, 30 (1980), 211-255. H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180. FORMULA In terms of Dumont-Foata polynomials F(r,x,y,z), Pbar(r,n) = (-4)^r F(r+1,1/2-n,1/2,1/2). In terms of odd absolute moments of a symmetric Bernoulli random walk with an odd number of steps, n*C(2*n,n)*Pbar(r,n) = Sum_{k} C(2*n-1,k) * |2*n-1-2*k|^(2*r+1). In terms of the Pochhammer symbol or ascending factorial (x)_k, Pbar(r,n) = Sum_{1 <= j <= k <= r+1} (-1)^(j+1)*(1-n)_{k-1}*(2j-1)^(2r+1)/((k-j)!(k)_j). n*Pbar(r,n) = 1 + 3^(2*r+1)*(n-1)/(n+1) + 5^(2*r+1)*(n-1)*(n-2)/((n+1)*(n+2)) + 7^(2*r+1)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... = Sum_{k = 0..n-1} binomial(n-1,k)/binomial(n+k,k)*(2*k + 1)^(2*r+1); this follows easily from the above recurrence. Examples are given below. - Peter Bala, Jan 22 2018 EXAMPLE Pbar(1,n) = 4*n-3, Pbar(2,n) = 32*n^2 - 56*n + 25. Triangle begins: 1, -3, 4, 25, -56, 32, -427, 1228, -1184, 384, 12465, -41840, 52416, -29184, 6144, ... From Peter Bala, Jan 22 2018: (Start) The polynomials Pbar(r,n) as hypergeometric series: r = 0: n*Pbar(0,n) = n = 1 + 3*(n-1)/(n+1) + 5*(n-1)*(n-2)/((n+1)*(n+2)) + 7*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 1/2. r = 1: n*Pbar(1,n) = n*(4*n - 3) = 1 + 3^3*(n-1)/(n+1) + 5^3*(n-1)*(n-2)/((n+1)*(n+2)) + 7^3*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 3/2. r = 2: n*Pbar(2,n) = n*(32*n^2 - 56*n + 25) = 1 + 3^5*(n-1)/(n+1) + 5^5*(n-1)*(n-2)/((n+1)*(n+2)) + 7^5*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 5/2. The above identities when r = 0 and r = 1 were found by Ramanujan. See Example 5 and Example 13 in Chapter 10 of Berndt. (End) PROG (PARI) N=10; P=vector(N+2); P=1; Pbar(r)=P[r+1]; for (r=0, N, P[r+2] = (2*n-1)^2 * Pbar(r) - 4*(n-1)^2 * subst(Pbar(r), n, n-1) ); seq=[];  for(r=1, N, seq=concat(seq, Vecrev(P[r])); );  seq \\ Joerg Arndt, Jan 27 2015 CROSSREFS (-1)^r Pbar(r,0) is sequence A009843. The leading coefficient of Pbar(r,n) is sequence A047053. Cf. also A036970, A083061, A160485 for analogous moments of Bernoulli random walks. Sequence in context: A128778 A338425 A304210 * A009391 A212696 A192346 Adjacent sequences:  A245241 A245242 A245243 * A245245 A245246 A245247 KEYWORD sign,easy,tabl AUTHOR Richard P. Brent, Jul 14 2014 EXTENSIONS More terms from Joerg Arndt, Jan 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 12:49 EDT 2021. Contains 347607 sequences. (Running on oeis4.)