login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245247
E.g.f. satisfies: A'(x) = (1 + x*A(x))^5 with A(0)=1.
5
1, 1, 5, 30, 255, 2880, 39495, 640800, 12048225, 257203200, 6146830125, 162636676800, 4719436701375, 149035892832000, 5088353594517375, 186769650799200000, 7334368923555410625, 306830158711872000000, 13623286425863528263125, 639832207565577018240000
OFFSET
0,3
COMMENTS
In general, if e.g.f satisfies A'(x) = (1+x*A(x))^p, then a(n) ~ c(p) * d(p)^n * n! / n^(1-1/(p-1)), where c(p) and d(p) are constants independent on n.
LINKS
FORMULA
E.g.f. satisfies: A(x) = 1 + Integral (1 + x*A(x))^5 dx.
a(n) ~ c * d^n * n! / n^(3/4), where d = 2.56982683907..., c = 0.803451595...
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal((1+x*A+x*O(x^n))^5)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A006882(n-1) (p=1), A000142 (p=2), A144008 (p=3), A144009 (p=4), A245248 (p=6), A245249 (p=7).
Sequence in context: A308946 A346681 A279155 * A353547 A199131 A342389
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 15 2014
STATUS
approved