login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245248
E.g.f. satisfies: A'(x) = (1 + x*A(x))^6 with A(0)=1.
5
1, 1, 6, 42, 408, 5328, 84960, 1600128, 34957440, 868247424, 24152048640, 744116855040, 25155056424960, 925729237969920, 36842642690181120, 1576774342552872960, 72212210263605657600, 3523820406525504552960, 182532196288859620147200, 10003033225361632653803520
OFFSET
0,3
COMMENTS
In general, if e.g.f satisfies A'(x) = (1+x*A(x))^p, then a(n) ~ c(p) * d(p)^n * n! / n^(1-1/(p-1)), where c(p) and d(p) are constants independent on n.
LINKS
FORMULA
E.g.f. satisfies: A(x) = 1 + Integral (1 + x*A(x))^6 dx.
a(n) ~ c * d^n * n! / n^(4/5), where d = 3.00663532009..., c = 0.73726997...
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal((1+x*A+x*O(x^n))^6)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A006882(n-1) (p=1), A000142 (p=2), A144008 (p=3), A144009 (p=4), A245247 (p=5), A245249 (p=7).
Sequence in context: A336950 A304071 A052608 * A197712 A377535 A306173
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 15 2014
STATUS
approved